

## LMC6061

# **Precision CMOS Single Micropower Operational Amplifier**

#### **General Description**

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6061 ideally suited for battery powered applications.

Other applications using the LMC6061 include precision full-wave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.

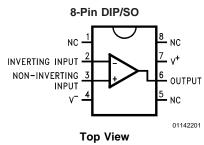
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.

For designs that require higher speed, see the LMC6081 precision single operational amplifier.

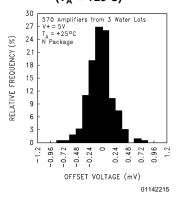
For a dual or quad operational amplifier with similar features, see the LMC6062 or LMC6064 respectively.

#### PATENT PENDING

#### **Features**


(Typical Unless Otherwise Noted)
■ Low offset voltage: 100 μV

- Ultra low supply current: 20 µA
- Operates from 4.5V to 15V single supply
- Ultra low input bias current: 10 fA
- Output swing within 10 mV of supply rail, 100k load
- Input common-mode range includes V<sup>-</sup>
- High voltage gain: 140 dB
- Improved latchup immunity


#### **Applications**

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

## **Connection Diagram**



#### Distribution of LMC6061 Input Offset Voltage (T<sub>A</sub> = +25°C)



## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Differential Input Voltage                        | ±Supply Voltage          |
|---------------------------------------------------|--------------------------|
| Voltage at Input/Output Pin                       | (V <sup>+</sup> ) +0.3V, |
| vollago at imparoatpat i in                       | (V <sup>-</sup> ) -0.3V  |
| Supply Voltage (V <sup>+</sup> – V <sup>-</sup> ) | (* ) 5.8*<br>16V         |
| Output Short Circuit to V <sup>+</sup>            | (Note 10)                |
| Output Short Circuit to V                         | (Note 2)                 |
| Lead Temperature                                  | 260°C                    |
| (Soldering, 10 sec.)                              | 200 0                    |

(Soldering, 10 sec.)

Storage Temp. Range -65°C to +150°C

Junction Temperature 150°C

ESD Tolerance (Note 4) 2 kV

Current at Input Pin ±10 mA

Current at Output Pin ±30 mA
Current at Power Supply Pin 40 mA
Power Dissipation (Note 3)

## **Operating Ratings** (Note 1)

Temperature Range

Thermal Resistance ( $\theta_{JA}$ ) (Note

11)

N Package, 8-Pin Molded DIP 115°C/W

M Package, 8-Pin Surface

 $\begin{array}{ll} \mbox{Mount} & \mbox{193}^{\circ}\mbox{C/W} \\ \mbox{Power Dissipation} & \mbox{(Note 9)} \end{array}$ 

#### **DC Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ . **Boldface** limits apply at the temperature extremes.  $V^+ = 5V$ ,  $V^- = 0V$ ,  $V_{CM} = 1.5V$ ,  $V_O = 2.5V$  and  $R_L > 1M$  unless otherwise specified.

|                 |                       |                                        |          | Тур                  | LMC6061AM            | LMC6061AI            | LMC6061I             |        |
|-----------------|-----------------------|----------------------------------------|----------|----------------------|----------------------|----------------------|----------------------|--------|
| Symbol          | Parameter             | Condi                                  | tions    | (Note 9)             | Limit                | Limit                | Limit                | Units  |
|                 |                       |                                        |          |                      | (Note 6)             | (Note 6)             | (Note 6)             |        |
| Vos             | Input Offset Voltage  |                                        |          | 100                  | 350                  | 350                  | 800                  | μV     |
|                 |                       |                                        |          |                      | 1200                 | 900                  | 1300                 | Max    |
| TCVos           | Input Offset Voltage  |                                        |          | 1.0                  |                      |                      |                      | μV/°C  |
|                 | Average Drift         |                                        |          |                      |                      |                      |                      |        |
| I <sub>B</sub>  | Input Bias Current    |                                        |          | 0.010                |                      |                      |                      | pА     |
|                 |                       |                                        |          |                      | 100                  | 4                    | 4                    | Max    |
| I <sub>os</sub> | Input Offset Current  |                                        |          | 0.005                |                      |                      |                      | pА     |
|                 |                       |                                        |          |                      | 100                  | 2                    | 2                    | Max    |
| R <sub>IN</sub> | Input Resistance      |                                        |          | >10                  |                      |                      |                      | Tera Ω |
| CMRR            | Common Mode           | 0V ≤ V <sub>CM</sub> ≤ 12              | .0V      | 85                   | 75                   | 75                   | 66                   | dB     |
|                 | Rejection Ratio       | V <sup>+</sup> = 15V                   |          |                      | 70                   | 72                   | 63                   | Min    |
| +PSRR           | Positive Power Supply | 5V ≤ V <sup>+</sup> ≤ 15V              |          | 85                   | 75                   | 75                   | 66                   | dB     |
|                 | Rejection Ratio       | $V_{O} = 2.5V$                         |          |                      | 70                   | 72                   | 63                   | Min    |
| -PSRR           | Negative Power Supply | 0V ≤ V <sup>-</sup> ≤ -10 <sup>V</sup> | /        | 100                  | 84                   | 84                   | 74                   | dB     |
|                 | Rejection Ratio       |                                        |          |                      | 70                   | 81                   | 71                   | Min    |
| V <sub>CM</sub> | Input Common-Mode     | V <sup>+</sup> = 5V and 1              | 5V       | -0.4                 | -0.1                 | -0.1                 | -0.1                 | V      |
|                 | Voltage Range         | for CMRR ≥ 60                          | ) dB     |                      | 0                    | 0                    | 0                    | Max    |
|                 |                       |                                        |          | V <sup>+</sup> – 1.9 | V <sup>+</sup> - 2.3 | V <sup>+</sup> - 2.3 | V <sup>+</sup> - 2.3 | V      |
|                 |                       |                                        |          |                      | V+ - 2.6             | V <sup>+</sup> - 2.5 | V <sup>+</sup> - 2.5 | Min    |
| $A_{\vee}$      | Large Signal          | $R_L = 100 \text{ k}\Omega$            | Sourcing | 4000                 | 400                  | 400                  | 300                  | V/mV   |
|                 | Voltage Gain          | (Note 7)                               |          |                      | 200                  | 300                  | 200                  | Min    |
|                 |                       |                                        | Sinking  | 3000                 | 180                  | 180                  | 90                   | V/mV   |
|                 |                       |                                        |          |                      | 70                   | 100                  | 60                   | Min    |
|                 |                       | $R_L = 25 \text{ k}\Omega$             | Sourcing | 3000                 | 400                  | 400                  | 200                  | V/mV   |
|                 |                       | (Note 7)                               |          |                      | 150                  | 150                  | 80                   | Min    |
|                 |                       |                                        | Sinking  | 2000                 | 100                  | 100                  | 70                   | V/mV   |
|                 |                       |                                        |          |                      | 35                   | 50                   | 35                   | Min    |

#### DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ . **Boldface** limits apply at the temperature extremes.  $V^+ = 5V$ ,  $V^- = 0V$ ,  $V_{CM} = 1.5V$ ,  $V_O = 2.5V$  and  $R_L > 1M$  unless otherwise specified.

|                |                      |                                                        | Тур      | LMC6061AM | LMC6061AI | LMC6061I |       |
|----------------|----------------------|--------------------------------------------------------|----------|-----------|-----------|----------|-------|
| Symbol         | Parameter            | Conditions                                             | (Note 9) | Limit     | Limit     | Limit    | Units |
|                |                      |                                                        |          | (Note 6)  | (Note 6)  | (Note 6) |       |
| V <sub>o</sub> | Output Swing         | V <sup>+</sup> = 5V                                    | 4.995    | 4.990     | 4.990     | 4.950    | V     |
|                |                      | $R_{L} = 100 \text{ k}\Omega \text{ to } 2.5 \text{V}$ |          | 4.970     | 4.980     | 4.925    | Min   |
|                |                      |                                                        | 0.005    | 0.010     | 0.010     | 0.050    | V     |
|                |                      |                                                        |          | 0.030     | 0.020     | 0.075    | Max   |
|                |                      | V <sup>+</sup> = 5V                                    | 4.990    | 4.975     | 4.975     | 4.950    | V     |
|                |                      | $R_L = 25 \text{ k}\Omega \text{ to } 2.5 \text{V}$    |          | 4.955     | 4.965     | 4.850    | Min   |
|                |                      |                                                        | 0.010    | 0.020     | 0.020     | 0.050    | V     |
|                |                      |                                                        |          | 0.045     | 0.035     | 0.150    | Max   |
|                |                      | V <sup>+</sup> = 15V                                   | 14.990   | 14.975    | 14.975    | 14.950   | V     |
|                |                      | $R_{L} = 100 \text{ k}\Omega \text{ to } 7.5 \text{V}$ |          | 14.955    | 14.965    | 14.925   | Min   |
|                |                      |                                                        | 0.010    | 0.025     | 0.025     | 0.050    | V     |
|                |                      |                                                        |          | 0.050     | 0.035     | 0.075    | Max   |
|                |                      | V <sup>+</sup> = 15V                                   | 14.965   | 14.900    | 14.900    | 14.850   | V     |
|                |                      | $R_L = 25 \text{ k}\Omega \text{ to } 7.5 \text{V}$    |          | 14.800    | 14.850    | 14.800   | Min   |
|                |                      |                                                        | 0.025    | 0.050     | 0.050     | 0.100    | V     |
|                |                      |                                                        |          | 0.200     | 0.150     | 0.200    | Max   |
| Io             | Output Current       | Sourcing, V <sub>O</sub> = 0V                          | 22       | 16        | 16        | 13       | mA    |
|                | V <sup>+</sup> = 5V  |                                                        |          | 8         | 10        | 8        | Min   |
|                |                      | Sinking, V <sub>O</sub> = 5V                           | 21       | 16        | 16        | 16       | mA    |
|                |                      |                                                        |          | 7         | 8         | 8        | Min   |
| lo             | Output Current       | Sourcing, V <sub>O</sub> = 0V                          | 25       | 15        | 15        | 15       | mA    |
|                | V <sup>+</sup> = 15V |                                                        |          | 9         | 10        | 10       | Min   |
|                |                      | Sinking, V <sub>O</sub> = 13V                          | 26       | 20        | 20        | 20       | mA    |
|                |                      | (Note 10)                                              |          | 7         | 8         | 8        | Min   |
| I <sub>s</sub> | Supply Current       | $V^{+} = +5V, V_{O} = 1.5V$                            | 20       | 24        | 24        | 32       | μA    |
|                |                      |                                                        |          | 35        | 32        | 40       | Max   |
|                |                      | $V^+ = +15V, V_O = 7.5V$                               | 24       | 30        | 30        | 40       | μA    |
|                |                      |                                                        |          | 40        | 38        | 48       | Max   |

## **AC Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ , **Boldface** limits apply at the temperature extremes.  $V^+ = 5V$ ,  $V^- = 0V$ ,  $V_{CM} = 1.5V$ ,  $V_O = 2.5V$  and  $R_L > 1M$  unless otherwise specified.

|                |                              |                                             | Тур      | LMC6061AM | LMC6061AI | LMC6061I |                     |
|----------------|------------------------------|---------------------------------------------|----------|-----------|-----------|----------|---------------------|
| Symbol         | Parameter                    | Conditions                                  | (Note 5) | Limit     | Limit     | Limit    | Units               |
|                |                              |                                             |          | (Note 6)  | (Note 6)  | (Note 6) |                     |
| SR             | Slew Rate                    | (Note 8)                                    | 35       | 20        | 20        | 15       | V/ms                |
|                |                              |                                             |          | 8         | 10        | 7        | Min                 |
| GBW            | Gain-Bandwidth Product       |                                             | 100      |           |           |          | kHz                 |
| $\theta_{m}$   | Phase Margin                 |                                             | 50       |           |           |          | Deg                 |
| e <sub>n</sub> | Input-Referred Voltage Noise | F = 1 kHz                                   | 83       |           |           |          | nV∕t√ <del>Hz</del> |
| i <sub>n</sub> | Input-Referred Current Noise | F = 1 kHz                                   | 0.0002   |           |           |          | pA∕v∕ <del>Hz</del> |
| T.H.D.         | Total Harmonic Distortion    | $F = 1 \text{ kHz}, A_V = -5$               |          |           |           |          |                     |
|                |                              | $R_L = 100 \text{ k}\Omega, V_O = 2 V_{PP}$ | 0.01     |           |           |          | %                   |
|                |                              | ±5V Supply                                  |          |           |           |          |                     |

#### AC Electrical Characteristics (Continued)

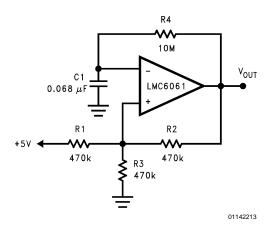
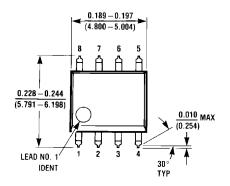
**Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

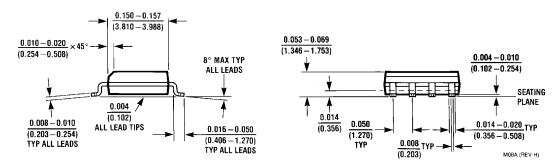
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 3: The maximum power dissipation is a function of  $T_{J(Max)}$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(Max)} - T_A)/\theta_{JA}$ .

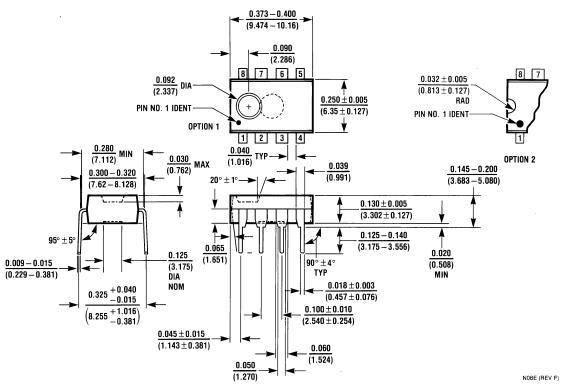
- Note 4: Human body model, 1.5 k $\Omega$  in series with 100 pF.
- Note 5: Typical values represent the most likely parametric norm.
- Note 6: All limits are guaranteed by testing or statistical analysis.
- Note 7:  $V^+ = 15V$ ,  $V_{CM} = 7.5V$  and  $R_L$  connected to 7.5V. For Sourcing tests,  $7.5V \le V_O \le 11.5V$ . For Sinking tests,  $2.5V \le V_O \le 7.5V$ .
- Note 8: V<sup>+</sup> = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
- Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance  $\theta_{JA}$  with  $P_D = (T_J T_A)/\theta_{JA}$ .
- Note 10: Do not connect output to V+, when V+ is greater than 13V or reliability witll be adversely affected.
- Note 11: All numbers apply for packages soldered directly into a PC board.
- Note 12: For guaranteed Military Temperature Range parameters see RETSMC6061X.

# **Typical Single-Supply Applications** (V<sup>+</sup> = 5.0 V<sub>DC</sub>) (Continued)



FIGURE 9. 1 Hz Square Wave Oscillator

## **Ordering Information**


| Package       | Temperature Ran | NSC                | Transport |               |
|---------------|-----------------|--------------------|-----------|---------------|
|               | Military        | ilitary Industrial |           | Media         |
|               | −55°C to +125°C | -40°C to +85°C     |           |               |
| 8-Pin         |                 | LMC6061AIN         | N08E      | Rail          |
| Molded DIP    |                 | LMC6061IN          |           |               |
| 8-Pin         |                 | LMC6061AIM,        | M08A      | Rail          |
|               |                 | LMC606AIMX         | IVIUOA    |               |
| Small Outline |                 | LMC6061IM,         |           | Tape and Reel |
|               |                 | LMC6061IMX         |           |               |
| 8-Pin         | LMC6061AMJ/883  |                    | J08A      | Rail          |
| Ceramic DIP   |                 |                    |           |               |

## Physical Dimensions inches (millimeters) unless otherwise noted (Continued)





8-Pin Small Outline Package
Order Number LMC6061AIM, LMC6061AIMX, LMC6061IM or LMC6061IMX
NS Package Number M08A



8-Pin Molded Dual-In-Line Package Order Number LMC6061AIN or LMC6061IN NS Package Number N08E