Dual, Current Feedback Low Power Op Amp AD812

FEATURES

Two Video Amplifiers in One 8-Lead SOIC Package
Optimized for Driving Cables in Video Systems
Excellent Video Specifications ($\mathrm{R}_{\mathrm{L}}=150 \Omega$):
Gain Flatness 0.1 dB to 40 MHz
0.02\% Differential Gain Error
0.02° Differential Phase Error
\section*{Low Power}
Operates on Single +3 V Supply
5.5 mA /Amplifier Max Power Supply Current
High Speed
145 MHz Unity Gain Bandwidth (3 dB)
1600 V/us Slew Rate
Easy to Use
50 mA Output Current
Output Swing to 1 V of Rails (150Ω Load)

APPLICATIONS

Video Line Driver
Professional Cameras
Video Switchers
Special Effects

PRODUCT DESCRIPTION

The AD812 is a low power, single supply, dual video amplifier. Each of the amplifiers have 50 mA of output current and are optimized for driving one back-terminated video load (150Ω) each. Each amplifier is a current feedback amplifier and features gain flatness of 0.1 dB to 40 MHz while offering differential gain and phase error of 0.02% and 0.02°. This makes the AD812 ideal for professional video electronics such as cameras and video switchers.

Figure 1. Fine-Scale Gain Flatness vs. Frequency, Gain $=+2, R_{L}=150 \Omega$

PIN CONFIGURATION
 8-Lead Plastic
 Mini-DIP and SOIC

The AD812 offers low power of 4.0 mA per amplifier max $\left(\mathrm{V}_{\mathrm{S}}=\right.$ +5 V) and can run on a single +3 V power supply. The outputs of each amplifier swing to within one volt of either supply rail to easily accommodate video signals of 1 V p-p. Also, at gains of +2 the AD812 can swing 3 V p-p on a single +5 V power supply. All this is offered in a small 8-lead plastic DIP or 8-lead SOIC package. These features make this dual amplifier ideal for portable and battery powered applications where size and power is critical.
The outstanding bandwidth of 145 MHz along with $1600 \mathrm{~V} / \mathrm{us}$ of slew rate make the AD812 useful in many general purpose high speed applications where a single +5 V or dual power supplies up to $\pm 15 \mathrm{~V}$ are available. The AD812 is available in the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Figure 2. Differential Gain and Phase vs. Supply Voltage, Gain $=+2, R_{L}=150 \Omega$

AD812-SPECIFICATIONS

Dual Supply ($@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{L}=150 \Omega$, unless otherwise noted)

NOTES
${ }^{1}$ Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.
Specifications subject to change without notice.
Single Supply ($\Theta \mathrm{T}_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$, unless otherwise noted)

Single Supply (Continued)

NOTES

${ }^{1}$ Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.
${ }^{2}$ Single supply differential gain and phase are measured with the ac coupled circuit of Figure 53.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . ± 18 V
Internal Power Dissipation ${ }^{2}$
Plastic (N) . 1.3 Watts
Small Outline (R) . 0.9 Watts
Input Voltage (Common Mode) . $\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage . $\pm 1.2 \mathrm{~V}$
Output Short Circuit Duration
. Observe Power Derating Curves
Storage Temperature Range N, R $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Specification is for device in free air: 8 -lead plastic package: $\theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} /$ Watt; 8 -lead SOIC package: $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} /$ Watt.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD812AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic DIP	N-8
AD812AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic SOIC 13" Reel AD812AR-REEL	
AD812AR-REEL7		7 " Reel	

METALIZATION PHOTO

Dimensions shown in inches and (mm).

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD 812 is limited by the associated rise in junction temperature. The maximum safe junction temperature for the plastic encapsulated parts is determined by the glass transition temperature of the plastic, about $150^{\circ} \mathrm{C}$. Exceeding this limit temporarily may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in device failure.
While the AD812 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150 degrees) is not exceeded under all conditions. To ensure proper operation, it is important to observe the derating curves.

It must also be noted that in high (noninverting) gain configurations (with low values of gain resistor), a high level of input overdrive can result in a large input error current, which may result in a significant power dissipation in the input stage. This power must be included when computing the junction temperature rise due to total internal power.

Figure 3. Plot of Maximum Power Dissipation vs. Temperature

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD812 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Operation Using a Single Supply

The AD812 will operate with total supply voltages from 36 V down to 2.4 V . With proper biasing (see Figure 53), it can be an outstanding single supply video amplifier. Since the input and output voltage ranges extend to within 1 volt of the supply rails, it will handle a 1.3 V p-p signal on a single 3.3 V supply, or a 3 V p-p signal on a single 5 V supply. The small signal, 0.1 dB bandwidths will exceed 10 MHz in either case, and the large signal bandwidths will exceed 6 MHz .
The capacitively coupled cable driver in Figure 53 will achieve outstanding differential gain and phase errors of 0.07% and 0.06 degrees respectively on a single 5 V supply. Resistor R2, in this circuit, is selected to optimize the differential gain and phase by operating the amplifier in its most linear region. To optimize the circuit for a 3 V supply, a value of $8 \mathrm{k} \Omega$ is recommended for R 2 .

Figure 53. Biasing for Single Supply Operation

Figure 54. Closed-Loop Gain and Phase vs. Frequency, Circuit of Figure 53

Figure 55. Pulse Response of the Circuit of Figure 53 with $V_{S}=5 \mathrm{~V}$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

