L9826 ## Octal Low-Side Driver for Resistive and Inductive Loads with Serial/Parallel Input Control, Output Protection and Diagnostic #### **Features** - OUTPUTS CURRENT CAPABILITY UP TO 450mA - TYPICAL $R_{ON} = 1.5\Omega$ AT $T_{.1} = 25$ °C - PARALLEL CONTROL INPUTS FOR OUTPUTS 1 AND 2 - SPI CONTROL FOR OUTPUTS 1 TO 8 - RESET FUNCTION WITH RESET SIGNAL AT NRES PIN OR UNDERVOLTAGE AT V_{CC} - INTRINSIC OUTPUT VOLTAGE CLAMPING AT TYP. 50V - OVERCURRENT SHUTDOWN AT OUTPUTS 3 TO 8 - SHORT CIRCUIT CURRENT LIMITATION AND SELECTIVE THERMAL SHUTDOWN AT OUTPUTS 1 AND 2 - OUTPUT STATUS DATA AVAILABLE ON THE SPI #### **Description** The L9826 is a Octal Low-Side Driver Circuit, dedicated for automotive applications. Output voltage clamping is provided for flyback current recirculation, when inductive loads are driven. Chip Select and Serial Peripheral Interface for outputs control and diagnostic data transfer. Parallel Control inputs for two outputs. #### Order codes | Part number | Temp range, °C | Package | Packing | |-------------|----------------|---------------|-------------| | L9826 | | SO20 (16+2+2) | Tube | | L9826TR | | SO20 | Tape & Reel | Rev 8 July 2005 CD00002120 1/17 www.st.com # **Contents** | 1 | Bloc | k Diagram 3 | |---|------|-------------------------------------| | 2 | Pins | Description and Connection Diagrams | | | 2.1 | Pin description | | | 2.2 | Pins connection | | | 2.3 | Thermal data | | 3 | Elec | trical Specifications | | | 3.1 | Absolute maximum ratings 6 | | | 3.2 | Electrical characteristics | | 4 | Fund | ctional Description | | | 4.1 | General | | | 4.2 | Output Stages Control | | | 4.3 | Power outputs characteristics | | | 4.4 | Diagnostics | | 5 | Appl | ication Information | | 6 | Pack | age Informations | | 7 | Revi | sion history | L9826 1 Block Diagram # 1 Block Diagram Figure 1. Block diagram # **2** Pins Description and Connection Diagrams ## 2.1 Pin description Table 1. Pin description | N° | Pin | Description | |----|-----------------|--------------------------| | 1 | Out 6 | output 6 | | 2 | Out 1 | output 1 | | 3 | NRes | asynchronous reset | | 4 | NCS | chip select (active low) | | 5 | GND | device ground | | 6 | GND | device ground | | 7 | NON1 | control input 1 | | 8 | SDO | serial data output | | 9 | Out 8 | output 8 | | 10 | Out 3 | output 3 | | 11 | Out 5 | output 5 | | 12 | Out 2 | output 2 | | 13 | SDI | serial data input | | 14 | CLK | serial clock | | 15 | GND | device ground | | 16 | GND | device ground | | 17 | NON2 | control input 2 | | 18 | V _{CC} | supply voltage | | 19 | Out 7 | output 7 | | 20 | Out 4 | output 4 | #### 2.2 Pins connection Figure 2. Connection diagram ### 2.3 Thermal data Table 2. Thermal data | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | | | |-----------------------|----------------------------------|----------------|------|------|------|------|--|--| | Thermal sh | Thermal shutdown | | | | | | | | | T _{JSC} | Thermal shutdown threshold | | 150 | 165 | | °C | | | | Thermal res | Thermal resistance | | | | | | | | | R _{thjA-one} | Single output (junction ambient) | | | | 90 | °C/W | | | | R _{thjA-all} | All outputs (junction ambient) | | | | 75 | °C/W | | | | R _{thj-pin} | Junction to Pin | | | | 18 | °C/W | | | 3 Electrical Specifications ## 3 Electrical Specifications ## 3.1 Absolute maximum ratings Table 3. For voltages and currents applied externally to the device | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |--------------------|--|----------------------|------|------|------|------| | V _{CC} | Supply voltage | | -0.3 | | 7 | V | | | Inputs and data lines
(NONx, NCS, CLK, SDI, nRes) | | | | | | | V _{IN} | Voltage
(NONx, NCS, CLK, SDI,
nRes) | | -0.3 | | 7 | ٧ | | I _{IN} | Protection diodes current 1) | T ≤ 1ms | -20 | | 20 | mA | | Outputs | (Out1 Out8) | | | | | | | V _{OUTc} | Continuous output voltage | | -0.7 | | 45 | V | | I _{OUT} | Output current ²⁾ | | -2 | | 1.0 | Α | | E _{OUTcl} | Output clamp energy | $I_{OUT} \le 150 mA$ | | | 10 | mJ | Note: 1 All inputs are protected against ESD according to MIL 883C; tested with HBM at 2KV. It corresponds to a dissipated energy $E \le 0,2mJ$. Figure 3. For currents determined within the device: | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |-----------------------------|---|-------------------------|------|------|------------------|------| | Outputs | Outputs (Out1 Out8) | | | | | | | lou- | Output current (Out1, Out2) | | | | I _{LIM} | Α | | IOUT | Output current (Out3 Out8) | | | | I _{SCB} | Α | | ΣI_{OUT1} $i = 1-8$ | Total average-current all outputs ³⁾ | T _{amb} = 60°C | 2.0 | | | Α | 3 When operating the device with short circuit at more than 2 outputs at the same time, damage due to electrical overstress may occur. ² Transient pulses in accordance to DIN40839 part 1, 3 and ISO 7637 Part 1, 3. ### 3.2 Electrical characteristics | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | | |------------------------|--|--|----------------------|------|-------------------------|------|--| | Supply voltage | | | | | | | | | I _{ccSTB} | Standby current | without load (nRes = Low) | | | 70 | μΑ | | | I _{ccOPM} | Operating mode | I _{OUT1 8} = 500mA
SPI - CLK = 3MHz
NCS = LOW
SDO no load | | | 5 | mA | | | Δl _{CC} | ΔI _{CC} during reverse output current | I _{out} = -2A | | | 100 | mA | | | V _{DDRES} | Undervoltage Reset | Reset of all registers and disable of all outputs | 3 | | 4 | V | | | Inputs (N | IONx. NCS, CLK, SDI, nRes) | | | | | | | | V_{INL} | Low level | | -0.3 | | 0.2·V _{CC} | ٧ | | | V _{INH} | High level | | 0.7·V _{CC} | | V _{CC}
+0,3 | V | | | V _{hyst} | Hysteresis voltage | | 0.85 | | | ٧ | | | I _{IN} | Input current | NONx, NCS, CLK, SDI
V _{IN} = V _{CC} | | | 10 | μА | | | | | NRES (V _{IN} = 0V) | -10 | | | μА | | | R_{IN} | Pullup resistance | (NONx, NCS, CLK, SDI)
Pulldown resistance (NRes) | 50 | | 250 | kΩ | | | C _{IN} | Input capacitance | Guaranteed by design | | | 10 | pF | | | Serial da | ta outputs | | | | | | | | V_{SDOH} | High output level | I _{SDO} = -4mA | V _{CC} -0.4 | | | ٧ | | | V _{SDOL} | Low output level | I _{SDO} = 3,2mA | | | 0.4 | V | | | I _{SDOL} | Tristate leakage current | NCS = high; $0V \le V_{SDO} \le V_{CC}$ | -10 | | 10 | μА | | | C _{SDO} | Output capacitance | f _{SDO} = 300kHz, Guaranteed by design | | | 10 | pF | | | Outputs | OUT 1 8 | | • | | • | | | | I _{OUTL1 - 8} | Leakage current | $\begin{aligned} &OUTx = OFF; \ V_{OUTx} = 25V; \\ &V_{CC} = 5V \end{aligned}$ | | | 100 | μА | | | I _{OUTL1 - 8} | Leakage current | OUTx = OFF; V _{OUTx} = 16V;
V _{CC} = 5V | | | 100 | μΑ | | 3 Electrical Specifications | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |------------------------|----------------------------------|--|--------------------------|------|---------------------|------| | I _{OUTL1 - 8} | Leakage current | OUTx = OFF; V _{OUTx} = 16V;
V _{CC} = 1V | | | 10 | μА | | V _{clp} | Output clamp voltage | $1mA \le I_{clp} \le I_{outp}$; $I_{test} = 10mA$ with correlation | 45 | | 62 | V | | R _{DSon} | On resistance OUT 1 8 | $I_{OUT} = 250 \text{mA}; T_j = +150^{\circ}\text{C}$ | | | 3.0 | Ω | | C _{OUT} | Output capacitance | V _{OUT} = 16V; f = 1MHz
guaranteed by design | | | 300 | pF | | Outputs | short circuit protection | | | | | | | I _{SBC} | Overcurrent shutoff threshold | OUT3 OUT8 | 0.45 | | 1.1 | Α | | I _{LIM} | Short circuit current limitation | OUT1; OUT2 | 0.5 | | 1.1 | Α | | t _{SCB} | Delay shutdown | | 0.2 | 3,0 | 12 | μS | | Diagnost | ics | | | | | | | V _{DG} | Diagnostic threshold voltage | | 0.32
.V _{CC} | | 0.4·V _{CC} | V | | I _{OL} | Open load detection sink current | $V_{out} = V_{DG}$ | 20 | | 100 | μΑ | | t _{df} | Diagnostic detection filter time | for output 1 & 2 on each diagnostic condition | 15 | | 50 | μS | | Outputs t | iming | | | • | • | | | t _{don1} | Turn ON delay of OUT 1 and 2 | NON _{1, 2} = 50% to V_{OUT} = 0,9· V_{bat}
NCS = 50% to V_{OUT} = 0,9· V_{bat}
(V_{BAT} = 16V, R_L = 500 Ω) | | | 5 | μS | | t _{don2} | Turn ON delay of OUT 3 to 8 | NCS = 50% to $V_{OUT} = 0.9 \cdot V_{bat}$
($V_{BAT} = 16V, R_L = 500\Omega$) | | | 10 | μs | | t _{doff} | Turn OFF delay of OUT 1 to 8 | NCS = 50% to $V_{OUT} = 0.1 \cdot V_{bat}$
NON _{1, 2} = 50% to $V_{OUT} = 0.1 \cdot V_{bat}$
($V_{BAT} = 16V, R_L = 500\Omega$) | | | 10 | μs | | dU _{on1/dt} | Turn ON voltage slew-rate | For output 3 to 8; 90% to 30% of V_{bat} ; $R_L = 500\Omega$; $V_{bat} = 16V$ | 0.7 | | 3.5 | V/μs | | dU _{on2/dt} | Turn ON voltage slew-rate | For output 1 and 2; 90% to 30% of V_{bat} ; $R_L = 500\Omega$; $V_{bat} = 16V$ | 2 | | 10 | V/μs | | dU _{off1/dt} | Turn OFF voltage slew-rate | For output 1 to 8; 30% to 90% of V_{bat} ; $R_L = 500\Omega$; $V_{bat} = 16V$ | 2 | | 10 | V/μs | | dU _{off2/dt} | Turn OFF voltage slew-rate | For output 1 to 8; 30% to 80% of V_{bat} ; $R_L = 500\Omega$; $V_{bat} = 0.9 \cdot V_{clp}$ | 2 | | 15 | V/μs | | Serial dia | gnostic link (Load capacitor at | SDO = 100pF) | | | | | | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |--------------------|--|--|------|------|------|------| | f _{clk} | Clock frequency | 50% duty cycle | | | 3 | MHz | | t _{clh} | Minimum time CLK = HIGH | | 160 | | | ns | | t _{cll} | Minimum time CLK = LOW | | 160 | | | ns | | t _{pcld} | Propagation delay CLK to data at SDO valid | $4,9V \le V_{CC} \le 5,1V$ | | | 100 | ns | | t _{csdv} | NCS = LOW to data at SDO active | | | | 100 | ns | | t _{sclch} | CLK low before NCS low | Setup time CLK to NCS change H/L | 100 | | | ns | | t _{hclcl} | CLK change L/H after NCS = low | | 100 | | | ns | | t _{scld} | SDI input setup time | CLK change H/L after SDI data valid | 20 | | | ns | | t _{hcld} | SDI input hold time | SDI data hold after CLK change H/L | | | 20 | ns | | t _{sclcl} | CLK low before NCS high | | 150 | | | ns | | t _{hclch} | CLK high after NCS high | | 150 | | | ns | | t _{pchdz} | NCS L/H to output data float | | | | 100 | ns | | | NCS pulse filter time | Multiple of 8 CLK cycles inside NCS period | | | | | 4 Functional Description ## 4 Functional Description #### 4.1 General The L9826 integrated circuit features 8 power low-side-driver outputs. Data is transmitted to the device using the Serial Peripheral Interface, SPI protocol. Outputs 1 and 2 can be controlled parallel or serial. The power outputs features voltage clamping function for flyback current recirculation and are protected against short circuit to Vbat. The diagnostics recognizes two outputs fault conditions: 1) overcurrent for outputs 3 to 8, overcurrent and thermal overload for outputs 1 and 2 in switch-on condition and 2) open load or short to GND in switch-off condition for all outputs. The outputs status can be read out via the serial interface. The chip internal reset is a OR function of the external nRes signal and internally generated undervoltage nRes signal. #### 4.2 Output Stages Control Each output is controlled with its latch and with common reset line, which enables all eight outputs. Outputs 1 and 2 can be controlled also by its NON1, NON2 inputs. It allows PWM control independently on the SPI. These inputs features internal pull-up resistors to assure that the outputs are switched off, when the inputs are open. The control data are transmitted via the SDI input, the timing of the serial interface is shown in *Figure 4...* The device is selected with low NCS signal and the input data are transferred into the 8 bit shift register at every falling CLK edge. The rising edge of the NCS latches the new data from the shift register to the drivers. Figure 4. Timing of the Serial Interface The SPI register data are transferred to the output latch at rising NCS edge. The digital filter between NCS and the output latch ensures that the data are transferred only after 8 CLK cycles or multiple of 8 CLK cycles since the last NCS falling edge. The NCS changes only at low CLK. L9826 4 Functional Description Outputs Control Tables: Table 5. Outputs 1, 2: | NON1, 2 | 1 | 0 | 0 | 1 | |--------------|-----|----|----|----| | SPI-bit 1, 2 | 0 | 0 | 1 | 1 | | Output 1, 2 | off | on | on | on | #### Outputs 3 to 8: | SPI-bit 3 8 | 0 | 1 | |-------------|-----|----| | Output 3 8 | off | on | Figure 5. Output control register structure ### 4.3 Power outputs characteristics #### for flyback current, outputs short circuit protection and diagnostics For output currents flowing into the circuit the output voltages are limited. The typical value of this voltage is 50V. This function allows that the flyback current of a inductive load recirculates into the circuit; the flyback energy is absorbed in the chip. Output short circuit protection for outputs 3 to 8 (dedicated for loads without inrush current): when the output current exceeds the short circuit threshold, the corresponding output overload latch is set and the output is switched off immediately. Output short circuit protection for outputs 1 and 2 (dedicated for loads with inrush current, as lamps): when the load current would exceed the short circuit limit value, the corresponding output goes in a current regulation mode. The output current is determined by the output characteristics and the output voltage depends on the load resistance. In this mode high power is dissipated in the output transistor and its temperature increases rapidly. When the power transistor temperature exceeds the thermal shutdown threshold, the overload latch is set and the corresponding output switched off. For the load diagnostic in output off condition each output features a diagnostic current sink, typ $60\mu A$. 577 CD00002120 11/17 4 Functional Description #### 4.4 Diagnostics The output voltage at all outputs is compared with the diagnostic threshold, typ 0,38 \cdot V_{CC}. Outputs 1 and 2 features dedicated fault latches. The output status signal is filtered and latched. The fault latches are cleared during NCS low. The latch stores the status bit, so the first reading after the error occurred might be wrong. The second reading is right. Table 6. Diagnostic Table for outputs 1 and 2 in parallel controlled mode: | Output 1, 2 | Output-voltage | Status-bit | Output-mode | |-------------|----------------|------------|--------------------| | off | > DG-threshold | high | correct operation | | off | < DG-threshold | low | fault condition 2) | | on | < DG-threshold | high | correct operation | | on | > DG-threshold | low | fault condition 1) | Fault condition 1) "output short circuit to Vbat": the output was switched on and the voltage at the output exceeds the diagnostics threshold. The output operates in current regulation mode or has been switched off due to thermal shutdown. The status bit is low. Fault condition 2) "open load" or "output short circuit to GND": the output is switched off and the voltage at the output drops below the diagnostics threshold, because the load current is lower than the output diagnostic current source, the load is interrupted. The diagnostic bit is low For outputs 3 to 8 the output status signals, are fed directly to the SPI register. Table 7. Diagnostic Table for outputs 1 to 8 in SPI controlled mode: | Output 1 8 | Output-voltage | Status-bit | Output-mode | |------------|----------------|------------|--------------------| | off | > DG-threshold | high | correct operation | | off | < DG-threshold | low | fault condition 2) | | on | < DG-threshold | low | correct operation | | on | > DG-threshold | high | fault condition 1) | The fault condition 1) "output short circuit to Vbat": the output was switched on and the voltage at the output exceeded the diagnostics threshold due to overcurrent, the output overload latch was set and the output has been switched off. The diagnostic bit is high. Fault condition 2) "open load" or "output short circuit to GND" is the same as of outputs 1 and 2. At the falling edge of NCS the output status data are transferred to the shift register. When NSC is low, data bits contained in the shift register are transferred to SDO output et every rising CLK edge. **L9826** 4 Functional Description Table 8. The Structure of the Outputs Status Register 57 CD00002120 13/17 5 Application Information ## 5 Application Information The typical application diagram is shown in *Figure 7.*. For higher current driving capability two outputs of the same kind can be paralleled. In this case the maximum flyback energy should not exceed the limit value for single output. The immunity of the circuit with respect to the transients at the output is verified during the characterization for Test Pulses 1, 2 and 3a, 3b, DIN40839 or ISO7637 part 3. The Test Pulses are coupled to the outputs with 200pF series capacitor. All outputs withstand testpulses without damage. The correct function of the circuit with the Test Pulses coupled to the outputs is verified during the characterization for the typical application with R = 30Ω to 100Ω , L= 0 to 600mH loads. The Test Pulses are coupled to the outputs with 200pF series capacitor. **L9826** 6 Package Informations # 6 Package Informations Figure 8. PowerSO20 Mechanical Data & Package Dimensions | DIM. | mm | | | inch | | | |------------------|---------------------------------------|-----------|------------------------|-------------------------|-------------------------|-----------------------| | | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | Α | 2.35 | | 2.65 | 0.093 | | 0.104 | | A1 | 0.10 | | 0.30 | 0.004 | | 0.012 | | В | 0.33 | | 0.51 | 0.013 | | 0.200 | | С | 0.23 | | 0.32 | 0.009 | | 0.013 | | D ⁽¹⁾ | 12.60 | | 13.00 | 0.496 | | 0.512 | | Е | 7.40 | | 7.60 | 0.291 | | 0.299 | | е | | 1.27 | | | 0.050 | | | Н | 10.0 | | 10.65 | 0.394 | | 0.419 | | h | 0.25 | | 0.75 | 0.010 | | 0.030 | | L | 0.40 | | 1.27 | 0.016 | | 0.050 | | k | | (|)° (min.), | 8° (max |) | ı | | ddd | | | 0.10 | | | 0.004 | | burr | dimension
rs. Mold fl
5mm per s | ash, prot | include m
usions or | old flash,
gate burr | protusion
s shall no | s or gate
t exceed | | | | - | | D | | | | | 4 | | dd C | - | E | 3 | | | PIN 1
IDENTIFICATION | 20 | | | | 11 | CD00002120 15/17 0016022 D 7 Revision history # 7 Revision history | Date | Revision | Changes | | |----------------|-----------------------------|---|--| | 22 April 2004 | 7 Initial release in EDOCS. | | | | 26 July 2005 8 | | Updated the Layout look & feel. Modify value R _{ON} in Features | | L9826 7 Revision history Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com CD00002120 17/17