Features

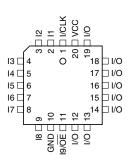
- Industry-standard Architecture
 - Emulates Many 20-pin PALs
 - Low-cost Easy-to-use Software Tools
- High-speed Electrically-erasable Programmable Logic Devices - 12 ns Maximum Pin-to-pin Delay
- Low-power 5 µA (Typ) Standby Current
- CMOS and TTL Compatible Inputs and Outputs – Input and I/O Pin Keeper Circuits
- Advanced Flash Technology
 - Reprogrammable
 - 100% Tested
- High-reliability CMOS Process
 - 20 Year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- Dual-in-line and Surface Mount Packages in Standard Pinouts
- PCI-compliant
- Green (Pb/Halide-free/RoHS Compliant) Package Options Available

1. Description

The ATF16V8CZ is a high-performance EECMOS programmable logic device that utilizes Atmel's proven electrically-erasable Flash memory technology. Speeds down to 12 ns and a 5 μ A (Typ) edge-sensing power-down mode are offered. All speed ranges are specified over the full 5V ±10% range for industrial temperature ranges; 5V ±5% for commercial range 5-volt devices.

The ATF16V8CZ incorporates a superset of the generic architectures, which allows direct replacement of the 16R8 family and most 20-pin combinatorial PLDs. Eight outputs are each allocated eight product terms. Three different modes of operation, configured automatically with software, allow highly complex logic functions to be realized.

The ATF16V8CZ can significantly reduce total system power, thereby enhancing system reliability and reducing power supply costs. When all the inputs and internal nodes are not switching, supply current drops to less than 5 µA typically. This automatic power-down feature (or sleep mode) allows for power savings in slow clock systems and asynchronous applications. Also, the pin-keeper circuits eliminate the need for internal pull-up resistors along with their attendant power consumption.



Highperformance EE PLD

ATF16V8CZ

Figure 2-3. PLCC

3. Absolute Maximum Ratings*

Temperature Under Bias40°C to +85°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

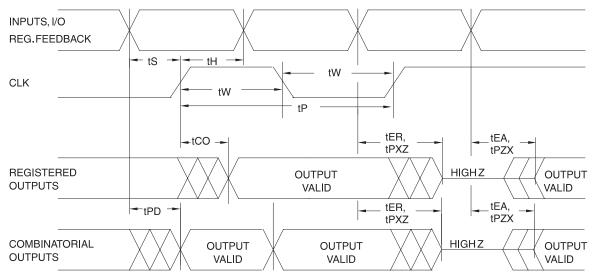
Note: 1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

4. DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	0°C - 70°C	-40°C - 85°C
V _{CC} Power Supply	5V ±5%	5V ±10%

4.1 DC Characteristics

Symbol	Parameter	Condition	Condition		Тур	Max	Units
I _{IL}	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}(Max)$				-10	μA
I _{IH}	Input or I/O High Leakage Current	$3.5 \le V_{IN} \le V_{CC}$	$3.5 \le V_{IN} \le V_{CC}$			10	μA
	Device Oversky Overset	15 MHz, V _{CC} = Max,	Com			95	mA
I _{CC1}	Power Supply Current	$V_{IN} = 0, V_{CC}, Outputs Open$ Inc	Ind.			105	mA
. (1)	Power Supply Current,	0 MHz, V _{CC} = Max,	Com.		5		μA
I _{CC} ⁽¹⁾	Standby Mode	$V_{IN} = 0, V_{CC}, Outputs Open$	Ind		5		μA
I _{OS}	Output Short Circuit Current	$V_{OUT} = 0.5V;$ $V_{CC} = 5V;$ TA = 25°C				-150	mA
V _{IL}	Input Low Voltage	Min < V _{CC} < Max		-0.5		0.8	V
V _{IH}	Input High Voltage			2.0		V _{CC} +1	V
V _{OL}	Output Low Voltage	$V_{CC} = Min$, All Outputs $I_{OL} = -16 \text{ mA}$	Com, Ind.			0.5	V


4.1 DC Characteristics

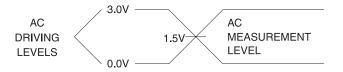
Symbol	Parameter	Condition			Тур	Max	Units
V _{OH}	Output High Voltage	$V_{CC} = Min$ $I_{OL} = -3.2 mA$		2.4			V
			Com.	24			
IOL	Output Low Current	V _{CC} = Min	Ind.	12			mA
I _{ОН}	Output High Current	V _{CC} = Min	Com., Ind.	4			mA

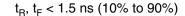
Note: 1. All I_{CC} parameters measured with outputs open. Data is based on Atmel test patterns. Reading may vary with pattern.

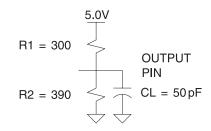
4.2 AC Waveforms⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

4.3 AC Characteristics


		-	12		15	
Symbol	Parameter	Min	Max	Min	Мах	Units
t _{PD}	Input or Feedback to Non-registered Output	3	12	3	15	ns
t _{CF}	Clock to Feedback		6		8	ns
t _{CO}	Clock to Output	2	8	2	10	ns
t _S	Input or Feedback Setup Time	10		12		ns
t _H	Input Hold Time	0		0		ns
t _P	Clock Period	12		16		ns
t _w	Clock Width	6		8		ns
	External Feedback 1/(t _S + t _{CO})		55		45	MHz
f _{MAX}	Internal Feedback 1/(t _S + t _{CF})		62		50	MHz
	No Feedback 1/(t _P)		83		62	MHz
t _{EA}	Input to Output Enable – Product Term	3	12	3	15	ns
t _{ER}	Input to Output Disable – Product Term	2	15	2	15	ns
t _{PZX}	OE pin to Output Enable	2	12	2	15	ns
t _{PXZ}	OE pin to Output Disable	1.5	12	1.5	15	ns




4.4 Input Test Waveforms

4.4.1 Input Test Waveforms and Measurement Levels

4.4.2 Output Test Loads

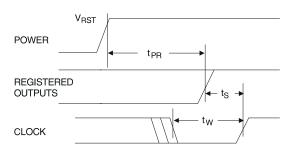
Note: Similar devices are tested with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible devices.

4.4.3 Pin Capacitance

	Тур	Мах	Units	Conditions
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	$V_{OUT} = 0V$

Table 4-1. Pin Capacitance (f = 1 MHz, T = $25^{\circ}C^{(1)}$)

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.


6

4.5 Power-up Reset

The ATF16V8CZ's registers are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. As a result, the registered output state will always be high on power-up.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The V_{CC} rise must be monotonic, from below 0.7V,
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock term high, and
- 3. The signals from which the clock is derived must remain stable during t_{PR}.

Parameter	Description	Тур	Max	Units
t _{PR}	Power-up Reset Time	600	1,000	ns
V _{RST}	Power-up Reset Voltage	3.8	4.5	V

4.6 Preload of Registered Outputs

The ATF16V8CZ's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by approved programmers.

5. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF16V8CZ fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

The security fuse should be programmed last, as its effect is immediate.

10. Ordering Information

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range		
			ATF16V8CZ-12JC	20J			
12	10	8	ATF16V8CZ-12PC	20P3	Commercial		
12	10	0	ATF16V8CZ-12SC	20S	(0°C to 70°C)		
			ATF16V8CZ-12XC	20X			
					ATF16V8CZ-15JC	20J	
	12	10	ATF16V8CZ-15PC	20P3	Commercial		
		10	ATF16V8CZ-15SC	20S	(0°C to 70°C)		
15			ATF16V8CZ-15XC	20X			
15			ATF16V8CZ-15JI	20J			
	10	10	ATF16V8CZ-15PI	20P3	Industrial		
	12	10	ATF16V8CZ-15SI	20S	(-40°C to 85°C)		
			ATF16V8CZ-15XI	20X			

10.1 Standard Package Options

Note: Shaded parts are being obsoleted in Q3-05 and being replaced by Green parts.

10.2 Using "C" Product for Industrial

To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.

10.3 Green Package Options (Pb/Halide-free/RoHS Compliant)


t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
			ATF16V8CZ-15JU	20J	
15	10	10	ATF16V8CZ-15PU	20P3	Industrial
15	12	10	ATF16V8CZ-15SU	20S	(-40°C to 85°C)
			ATF16V8CZ-15XU	20X	

	Package Type					
20J 20-lead, Plastic J-leaded Chip Carrier (PLCC)						
20P3	20P3 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					
20S	20-lead, 0.300" Wide, Plastic Gull-wing Small Outline (SOIC)					
20X	20-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)					

20 ATF16V8CZ

11. Package Information

11.1 20J – PLCC

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	_	4.572	
A1	2.286	_	3.048	
A2	0.508	_	_	
D	9.779	_	10.033	
D1	8.890	_	9.042	Note 2
E	9.779	-	10.033	
E1	8.890	_	9.042	Note 2
D2/E2	7.366	-	8.382	
В	0.660	_	0.813	
B1	0.330	_	0.533	
е				

Notes:

1. This package conforms to JEDEC reference MS-018, Variation AA. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1

and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

TITLE

20J, 20-lead, Plastic J-leaded Chip Carrier (PLCC)

DRAWING NO.

20J

0453H-PLD-7/05