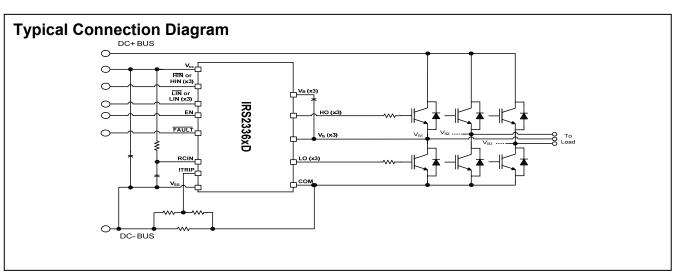


HIGH VOLTAGE 3 PHASE GATE DRIVER IC

Features

- Drives up to six IGBT/MOSFET power devices
- Gate drive supplies up to 20 V per channel
- Integrated bootstrap functionality (IRS2336(4)D)
- Over-current protection
- Over-temperature shutdown input
- Advanced input filter
- Integrated deadtime protection
- Shoot-through (cross-conduction) protection
- Undervoltage lockout for V_{CC} & V_{BS}
- Enable/disable input and fault reporting
- Adjustable fault clear timing
- Separate logic and power grounds
- 3.3 V input logic compatible
- Tolerant to negative transient voltage
- Designed for use with bootstrap power supplies
- Matched propagation delays for all channels
- -40°C to 125°C operating range
- RoHS compliant
- Lead-Free

Typical Applications


- Appliance motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

Product Summary

Topology	,	3 Phase
V _{OFFSET}		≤ 600 V
IRS2336(D)		10 V – 20 V
V _{OUT}	IRS23364D	11.5 V – 20 V
I ₀₊ & I ₀₋ (t	ypical)	200 mA & 350 mA
t _{ON} & t _{OFF} (typical)		530 ns & 530 ns
Deadtime (typical)		275 ns

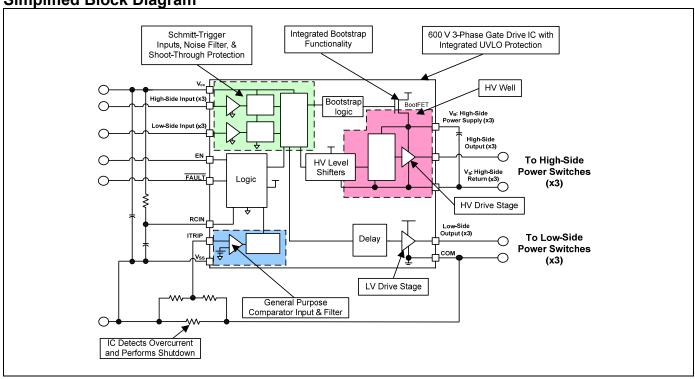
Package Options

www.irf.com © 2008 International Rectifier

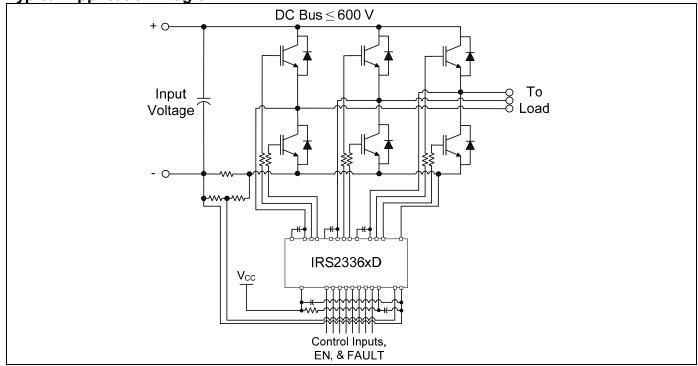
Table of Contents	Page
Description	3
Feature Comparison	3
Simplified Block Diagram	4
Typical Application Diagram	4
Qualification Information	5
Absolute Maximum Ratings	6
Recommended Operating Conditions	7
Static Electrical Characteristics	8-9
Dynamic Electrical Characteristics	10
Functional Block Diagram	11-12
Input/Output Pin Equivalent Circuit Diagram	13-14
Lead Definitions	15-16
Lead Assignments	17
Application Information and Additional Details	18-34
Parameter Temperature Trends	35-38
Package Details	39-42
Tape and Reel Details	43-45
Part Marking Information	46
Ordering Information	47

Description

The IRS2336xD are high voltage, high speed, power MOSFET and IGBT gate drivers with three high-side and three low-side referenced output channels for 3-phase applications. This IC is designed to be used with low-cost bootstrap power supplies; the bootstrap diode functionality has been integrated into this device to reduce the component count and the PCB size. Proprietary HVIC and latch immune CMOS technologies have been implemented in a rugged monolithic structure. The floating logic input is compatible with standard CMOS or LSTTL outputs (down to 3.3 V logic). A current trip function which terminates all six outputs can be derived from an external current sense resistor. Enable functionality is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that a fault (e.g., over-current, over-temperature, or undervoltage shutdown event) has occurred. Fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high-pulse current buffer stage designed for minimum driver cross-conduction. Shoot-through protection circuitry and a minimum deadtime circuitry have been integrated into this IC. Propagation delays are matched to simplify the HVIC's use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high-side configuration, which operate up to 600 V.


Feature Comparison: IRS2336xD Family

Part Number	Input Logic	UVLO	$V_{\text{IT,TH}}$	t _{ON} , t _{OFF}	V _{OUT}
IRS2336(D)	HIN/N, LIN/N	8.9 V/ 8.2 V	0.46 V	530 ns, 530 ns	10 V – 20 V
IRS23364D	HIN, LIN	11.1 V/ 10.9 V	0.46 V	530 ns, 530 ns	11.5 V – 20 V


3

Downloaded from Elcodis.com electronic components distributor

Simplified Block Diagram

Typical Application Diagram

Qualification Information[†]

		Industrial ^{††}				
Qualification Level		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.				
		SOIC28W	MSL3 ^{†††} , 260°C			
		MLPQ7X7	(per IPC/JEDEC J-STD-020)			
Moisture Sensitivity Level		PLCC44	MSL3 ^{†††} , 245°C (per IPC/JEDEC J-STD-020)			
			Not applicable (non-surface mount package style)			
	Human Body Model	Class 2 (per JEDEC standard JESD22-A114)				
ESD	ESD Machine Model		Class B (per EIA/JEDEC standard EIA/JESD22-A115)			
Charged Device Model ††††		Class IV (per JEDEC standard JESD22-C101)				
IC Latch-Up Test		Class I, Level A (per JESD78)				
RoHS Compliant		Yes				

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.
- †††† Charged Device Model classification is based on SOIC28W package.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS} unless otherwise stated in the table. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Voltage clamps are included between V_{CC} & COM (25 V), V_{CC} & V_{SS} (20 V), and V_B & V_S (20 V).

Symbol	Definition	Min	Max	Units		
V _{CC}	Low side supply voltage		-0.3	20 [†]		
\/	Logic input voltage (HIN, LIN, ITRIP, EN)	IRS2336(D)	V _{SS} -0.3	V _{SS} +5.2		
V_{IN}	Logic input voitage (Hilly, Lily, HRIP, EN)	IRS23364D	V _{SS} -0.3	V _{CC} +0.3		
V_{RCIN}	RCIN input voltage		V _{SS} -0.3	V_{CC} +0.3		
V_{B}	High-side floating well supply voltage		-0.3	620 [†]	V	
Vs	High-side floating well supply return voltage		V_{B} -20 [†]	V _B +0.3	7 °	
V _{HO}	Floating gate drive output voltage		V _S -0.3	V _B +0.3		
V_{LO}	Low-side output voltage		COM-0.3	V _{CC} +0.3		
V_{FLT}	Fault output voltage		V _{SS} -0.3	V _{CC} +0.3		
COM	Power ground		V _{CC} -25	V_{CC} +0.3		
dV _S /dt	Allowable V _S offset supply transient relative	_	50	V/ns		
PW_{HIN}	High-side input pulse width		500	_	ns	
	Package power dissipation @ T _A ≤+25°C	28-Lead PDIP	_	1.5		
		28-Lead		1.6	_ W	
P _D		SOICW				
		44-Lead PLCC	_	2.0		
		48-Lead		2.0		
		MLPQ7X7				
		28-Lead PDIP	_	83		
		28-Lead	_	78		
Rth_{JA}	Thermal resistance, junction to ambient	SOICW		00	°C/W	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	44-Lead PLCC	_	63	4	
		48-Lead	_	63		
т	lunction tomporature	MLPQ7X7				
TJ	Junction temperature		150 150	°C		
T _S	Storage temperature		-55	300		
ΙL	Lead temperature (soldering, 10 seconds)	_	300			

[†] All supplies are tested at 25 V. An internal 20 V clamp exists for each supply.

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to V_{SS} unless otherwise stated in the table. The offset rating is tested with supplies of $(V_{CC}\text{-COM}) = (V_B\text{-}V_S) = 15 \text{ V}$.

Symbol	Definition	Min	Max	Units		
V_{CC}	Low-side supply voltage	IRS2336(D)	10	20		
V CC	Low-side supply voltage	IRS23364D	11.5	20		
V_{IN}	HIN, LIN, & EN input voltage	IRS2336(D)	V_{SS}	V _{SS} +5		
VIN	Tilly, Lily, & Ely input voltage	IRS23364D	V _{SS}	V_{CC}		
V_{B}	High-side floating well supply voltage	IRS2336(D)	V _S +10	V _S +20		
v _B	High-side floating well supply voltage	IRS23364D	V _S +11.5	V _S +20		
Vs	High-side floating well supply offset voltage	COM-8	600	V		
V _S (t)	Transient high-side floating supply voltage	-50	600	V		
V_{HO}	Floating gate drive output voltage		Vs	V_B		
V_{LO}	Low-side output voltage		COM	V _{CC}		
COM	Power ground	-5	5			
V_{FLT}	FAULT output voltage	V_{SS}	V_{CC}			
V_{RCIN}	RCIN input voltage	V_{SS}	V _{CC}			
V_{ITRIP}	ITRIP input voltage	V_{SS}	V _{SS} +5			
T _A	Ambient temperature	-40	125	°C		

[†] Logic operation for V_S of -8 V to 600 V. Logic state held for V_S of -8 V to $-V_{BS}$. Please refer to Design Tip DT97-3 for more details.

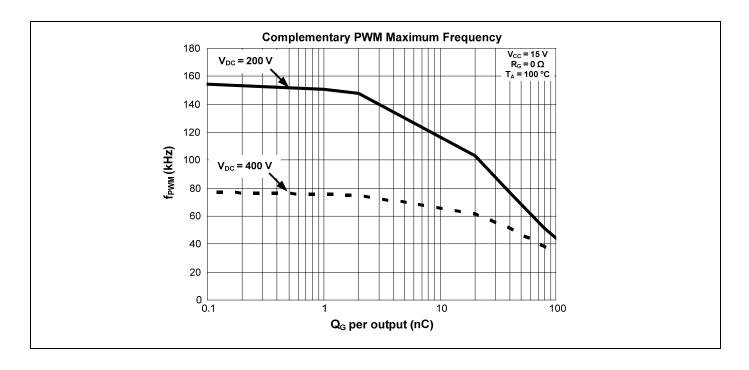
^{††} Operational for transient negative V_S of V_{SS} - 50 V with a 50 ns pulse width. Guaranteed by design. Refer to the Application Information section of this datasheet for more details.

Static Electrical Characteristics

 $(V_{CC}\text{-COM}) = (V_B\text{-V}_S) = 15 \text{ V}$. $T_A = 25^{\circ}\text{C}$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. The V_O and I_O parameters are referenced to respective V_S and COM and are applicable to the respective output leads HO or LO. The V_{CCUV} parameters are referenced to V_{SS} . The V_{BSUV} parameters are referenced to V_S .

Symbol	Definition		Min	Тур	Max	Units	Test Conditions	
V _{CCUV+}	V _{CC} supply undervoltage positive	IRS2336(D)	8	8.9	9.8			
▼ CCUV+	going threshold	IRS23364D	10.4	11.1	11.6			
V	V _{CC} supply undervoltage negative	IRS2336(D)	7.4	8.2	9			
V _{CCUV} -	going threshold	IRS23364D	10.2	10.9	11.4			
V	V _{CC} supply undervoltage	IRS2336(D)	0.3	0.7	_			
V _{CCUVHY}	hysteresis	IRS23364D	—	0.2	_	V	NA	
V	V _{BS} supply undervoltage positive	IRS2336(D)	8	8.9	9.8]	INA	
V _{BSUV+}	going threshold	IRS23364D	10.4	11.1	11.6			
V	V _{BS} supply undervoltage negative	IRS2336(D)	7.4	8.2	9			
V_{BSUV}	going threshold	IRS23364D	10.2	10.9	11.4			
V	V _{BS} supply undervoltage	IRS2336(D)	0.3	0.7	_			
V _{BSUVHY}	hysteresis	IRS23364D	—	0.2	_			
I _{LK}	High-side floating well offset supply	leakage	_	_	50		$V_{B} = V_{S} = 600 \text{ V}$	
I _{QBS}	Quiescent V _{BS} supply current	-	_	70	120	μA		
_	1 1 2	IRS2336	_	2	3	A	All inputs are in the	
I _{QCC}	Quiescent V _{CC} supply current	IR2336(4)D	_	3	4	mA	off state	
V _{OH}	High level output voltage drop, V _{BIA}	s-V _O	_	0.90	1.4	V	I - 20 m A	
V _{OL}	Low level output voltage drop, V _O		_	0.40	0.6	V	I_0 = 20 mA	
I _{o+}	Output high short circuit pulsed current		120	200	_	A	$V_O=0 \text{ V}, V_{IN}=0 \text{ V},$ $PW \le 10 \mu\text{s}$	
I _{o-}	Output low short circuit pulsed curre	ent	250	350	mA	$V_{O} = 15 \text{ V}, V_{IN} = 5 \text{ V},$ PW \le 10 \mus		
M	Logic "0" input voltage		2.5				•	
V _{IH}	Logic "1" input voltage		2.5	_			NA	
\/	Logic "1" input voltage				0.0	V	INA	
V_{IL}	Logic "0" input voltage			_	0.8	V		
V _{IN,CLAMP}	Input voltage clamp (HIN, LIN, ITRIP and EN)	IRS2336(D)	4.8	5.2	5.65		I _{IN} = 100 μA	
1	Input bias current (HO = High)	IRS2336(D)	_	150	200		$V_{IN} = 0 V$	
I _{HIN+}		IRS23364D	_	120	165		V _{IN} = 4 V	
1	Input bias current (HO = Low)	IRS2336(D)	—	110	150]	v _{IN} – 4 v	
I _{HIN-}		IRS23364D	—	_	1		V _{IN} = 0 V	
1	Input bigg ourrent (I O = High)	IRS2336(D)	—	150	200	μA	V _{IN} – U V	
I _{LIN+}	Input bias current (LO = High)	IRS23364D	_	120	165	1	\/ = 4\/	
I.	Input bias current (LO = Low)	IRS2336(D)	_	110	150	-	$V_{IN} = 4 V$	
I _{LIN-}	Imput bias current (LO – LOW)	IRS23364D	_		1		$V_{IN} = 0 V$	
$V_{RCIN,TH}$	RCIN positive going threshold			8		V	NA	
V _{RCIN,HY}	RCIN hysteresis			3				
I _{RCIN}	RCIN input bias current				1	μΑ	$V_{RCIN} = 0 V \text{ or } 15 V$	
R _{ON,RCIN}	RCIN low on resistance			50	100	Ω	I = 1.5 mA	

Static Electrical Characteristics (continued)


Symbol	Definition		Min	Тур	Max	Units	Test Conditions
$V_{IT,TH+}$	ITRIP positive going threshold		0.37	0.46	0.55		
$V_{\text{IT,TH-}}$	ITRIP negative going threshold		_	0.4	_	V	NA
$V_{\text{IT,HYS}}$	ITRIP hysteresis		_	0.07	_		
ı	"High" ITRIP input bias current	IRS2336(D)	_	5	20		V _{IN} = 4 V
I _{ITRIP+}	High Trkie input bias current	IRS23364D	_	5	40	μΑ	V _{IN} = 4 V
I _{ITRIP-}	"Low" ITRIP input bias current				1	μ	$V_{IN} = 0 V$
$V_{\text{EN,TH+}}$	Enable positive going threshold		_	_	2.5	V	NA
V _{EN,TH-}	Enable negative going threshold		0.8	_	_		INA
	"High" enable input bias current	IRS2336(D)	_	5	20		\/ - 4 \/
I _{EN+}	High enable input bias current	IRS23364D	_	120	165	μA	$V_{IN} = 4 V$
I _{EN-}	"Low" enable input bias current		_	—	1		$V_{IN} = 0 V$
R _{ON,FLT}	FAULT low on resistance		_	50	100		I = 1.5 mA
R _{BS}	Internal BS diode Ron (IRS2336(4)D)		_	200	_	Ω	NA

Dynamic Electrical Characteristics V_{CC} = V_B = 15 V, V_S = V_{SS} = COM, T_A = 25°C, and C_L = 1000 pF unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{ON}	Turn-on propagation delay	400	530	750		
t _{OFF}	Turn-off propagation delay	400	530	750		
t_R	Turn-on rise time	_	125	190		V _{IN} = 0 V & 5 V
t _F	Turn-off fall time	_	50	75		V _{IN} = 0 V & 5 V
t _{FIL,IN}	Input filter time [†] (HIN, LIN, ITRIP)	200	350	510	ns	
t _{EN}	Enable low to output shutdown propagation delay	350	460	650		$V_{IN, V_{EN}} = 0 \text{ V or 5 V}$
t _{FILTER,EN}	Enable input filter time	100	200	_		NA
t _{FLTCLR}	FAULT clear time RCIN: R = 2 M Ω , C = 1 nF	1.3	1.65	2	ms	$V_{IN} = 0 \text{ V or } 5 \text{ V}$ $V_{ITRIP} = 0 \text{ V}$
t _{ITRIP}	ITRIP to output shutdown propagation delay	500	750	1200		V _{ITRIP} = 5 V
t_{BL}	ITRIP blanking time	_	400	_		$V_{IN} = 0 \text{ V or } 5 \text{ V}$
t_{FLT}	ITRIP to FAULT propagation delay	400	600	950		$V_{ITRIP} = 5 V$
DT	Deadtime	190	275	420	ns	$V_{IN} = 0 V \& 5 V$ without
MDT	DT matching ^{††}			60		external deadtime
MT	Delay matching time $(t_{ON}, t_{OFF})^{\dagger\dagger}$	_		50		V _{IN} = 0 V & 5 V with external deadtime larger than DT
PM	Pulse width distortion ^{†††}			75		PW input=10 μs

- The minimum width of the input pulse is recommended to exceed 500 ns to ensure the filtering time of the † input filter is exceeded.
- This parameter applies to all of the channels. Please see the application section for more details.
- ††† PM is defined as PW_{IN} PW_{OUT}.

