

Precision Instrumentation Amplifier

+IN

AD8221

FEATURES

Easy to use Available in space-saving MSOP Gain set with 1 external resistor (gain range 1 to 1000) Wide power supply range: ±2.3 V to ±18 V Temperature range for specified performance: -40°C to +85°C Operational up to 125°C¹ **Excellent AC specifications** 80 dB minimum CMRR to 10 kHz (G = 1) 825 kHz, -3 dB bandwidth (G = 1) 2 V/µs slew rate Low noise 8 nV/√Hz, @ 1 kHz, maximum input voltage noise 0.25 µV p-p input noise (0.1 Hz to 10 Hz) High accuracy dc performance (AD8221BR) 90 dB minimum CMRR (G = 1) 25 µV maximum input offset voltage 0.3 µV/°C maximum input offset drift 0.4 nA maximum input bias current

APPLICATIONS

Weigh scales Industrial process controls Bridge amplifiers Precision data acquisition systems Medical instrumentation Strain gages Transducer interfaces

GENERAL DESCRIPTION

The AD8221 is a gain programmable, high performance instrumentation amplifier that delivers the industry's highest CMRR over frequency in its class. The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz. In contrast, the AD8221 maintains a minimum CMRR of 80 dB to 10 kHz for all grades at G = 1. High CMRR over frequency allows the AD8221 to reject wideband interference and line harmonics, greatly simplifying filter requirements. Possible applications include precision data acquisition, biomedical analysis, and aerospace instrumentation.

CONNECTION DIAGRAM

4D822

TOP VIEW

Figure 1.

5

03 149

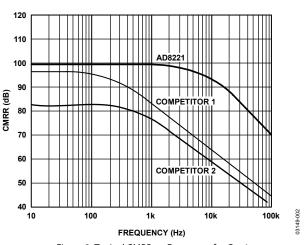


Figure 2. Typical CMRR vs. Frequency for G = 1

Low voltage offset, low offset drift, low gain drift, high gain accuracy, and high CMRR make this part an excellent choice in applications that demand the best dc performance possible, such as bridge signal conditioning.

Programmable gain affords the user design flexibility. A single resistor sets the gain from 1 to 1000. The AD8221 operates on both single and dual supplies and is well suited for applications where ± 10 V input voltages are encountered.

The AD8221 is available in a low cost 8-lead SOIC and 8-lead MSOP, both of which offer the industry's best performance. The MSOP requires half the board space of the SOIC, making it ideal for multichannel or space-constrained applications.

Performance is specified over the entire industrial temperature range of -40° C to $+85^{\circ}$ C for all grades. Furthermore, the AD8221 is operational from -40° C to $+125^{\circ}$ C¹.

 1 See Typical Performance Characteristics for expected operation from 85°C to 125°C.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

 $V_{\text{S}}=\pm 15$ V, V_{REF} = 0 V, T_{A} = 25°C, G = 1, R_{L} = 2 k Ω , unless otherwise noted.

Table 1.

		AR Grade				BR Grade		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO								
CMRR DC to 60 Hz with 1 k Ω Source Imbalance	$V_{CM} = -10 V to +10 V$							
G = 1		80			90			dB
G = 10		100			110			dB
G = 100		120			130			dB
G = 1000		130			140			dB
CMRR at 10 kHz	$V_{CM} = -10 V \text{ to } +10 V$	150			1.10			ab
G = 1		80			80			dB
G = 10		90			100			dB
G = 100 G = 100		100			110			dB
G = 100 G = 1000		100			110			dВ
G = 1000	DTI a cier	100			110			UD
NOISE	$\frac{\text{RTI noise} =}{\sqrt{e_{\text{NI}}^2 + (e_{\text{NO}}/\text{G})^2}}$							
Voltage Noise, 1 kHz								
Input Voltage Noise, e _{NI}	$V_{\text{IN+}}, V_{\text{IN-}}, V_{\text{REF}} = 0$			8			8	nV/√H:
Output Voltage Noise, e _{NO}				75			75	nV/√H:
RTI	f = 0.1 Hz to 10 Hz							
G = 1			2			2		μV p-р
G = 10			0.5			0.5		μV p-p
G = 100 to 1000			0.25			0.25		μV p-p
Current Noise	f = 1 kHz		40			40		fA/√Hz
	f = 0.1 Hz to 10 Hz		6			6		рАр-р
VOLTAGE OFFSET ¹								
Input Offset, V _{osi}	$V_s = \pm 5 V$ to $\pm 15 V$			60			25	μV
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			86			45	μV
Average TC				0.4			0.3	μV/°C
Output Offset, Voso	$V_s = \pm 5 V$ to $\pm 15 V$			300			200	μV
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			0.66			0.45	mV
Average TC				6			5	μV/°C
Offset RTI vs. Supply (PSR)	$V_{s} = \pm 2.3 V \text{ to } \pm 18 V$							1
G = 1		90	110		94	110		dB
G = 10		110	120		114	130		dB
G = 100		124	130		130	140		dB
G = 1000		130	140		140	150		dB
INPUT CURRENT		150	110			150		
Input Bias Current			0.5	1.5		0.2	0.4	nA
Over Temperature	T = -40°C to +85°C		0.5	2.0		0.2	0. 4 1	nA
Average TC			1	2.0		1		pA/°C
Input Offset Current			0.2	0.6		0.1	0.4	nA
Over Temperature	T = -40°C to +85°C		0.2	0.8 0.8		0.1	0.4 0.6	nA
-	ι – -40 C ιΟ +δ5 C		1	0.0		1	0.0	
			1			1		pA/°C
REFERENCE INPUT			20			20		
R _{IN}			20	<u> </u>		20	<u>()</u>	kΩ
l _{IN}	$V_{\text{IN+}}, V_{\text{IN-}}, V_{\text{REF}} = 0$		50	60		50	60	μA
Voltage Range		-Vs		+Vs	-Vs		+Vs	V
Gain to Output			1 ± 0.0	001		1 ± 0.00	TUC	V/V

Rev. B | Page 3 of 24

			de	BR Grade				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
POWER SUPPLY								
Operating Range	$V_{s} = \pm 2.3 V \text{ to } \pm 18 V$	±2.3		±18	±2.3		±18	v
Quiescent Current			0.9	1		0.9	1	mA
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$		1	1.2		1	1.2	mA
DYNAMIC RESPONSE								
Small Signal –3 dB Bandwidth								
G = 1			825			825		kHz
G = 10			562			562		kHz
G = 100			100			100		kHz
G = 1000			14.7			14.7		kHz
Settling Time 0.01%	10 V step							
G = 1 to 100			10			10		μs
G = 1000			80			80		μs
Settling Time 0.001%	10 V step							
G = 1 to 100			13			13		μs
G = 1000			110			110		μs
Slew Rate	G = 1	1.5	2		1.5	2		V/μs
	G = 5 to 100	2	2.5		2	2.5		V/µs
GAIN	$G = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$							
Gain Range		1		1000	1		1000	V/V
Gain Error	Vout ± 10 V							
G = 1				0.03			0.02	%
G = 10				0.3			0.15	%
G = 100				0.3			0.15	%
G = 1000				0.3			0.15	%
Gain Nonlinearity	$V_{OUT} = -10 V \text{ to } +10 V$							
G = 1 to 10	$R_L = 10 k\Omega$		3	10		3	10	ppm
G = 100	$R_L = 10 k\Omega$		5	15		5	15	ppm
G = 1000	$R_L = 10 \text{ k}\Omega$		10	40		10	40	ppm
G = 1 to 100	$R_L = 2 k\Omega$		10	95		10	95	ppm
Gain vs. Temperature								
G = 1			3	10		2	5	ppm/°
G > 1 ²				-50			-50	ppm/°
INPUT								
Input Impedance								
Differential			100 2			100 2		GΩ∥pF
Common Mode			100 2			100 2		GΩ pF
Input Operating Voltage Range ³	$V_{s} = \pm 2.3 V \text{ to } \pm 5 V$	-Vs + 1.9	- 11-3	+Vs - 1.1	-Vs + 1.9	- 11-	+Vs - 1.1	V
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 2.0$		+Vs - 1.2	$-V_{s} + 2.0$		+Vs - 1.2	v
Input Operating Voltage Range	$V_s = \pm 5 V \text{ to } \pm 18 V$	$-V_{s} + 1.9$		+Vs - 1.2	$-V_{s} + 1.9$		+Vs - 1.2	V
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 2.0$		+Vs - 1.2	$-V_{s} + 2.0$		+Vs - 1.2	v
OUTPUT	$R_L = 10 k\Omega$							
Output Swing	$V_{s} = \pm 2.3 \text{ V to } \pm 5 \text{ V}$	-Vs + 1.1		+Vs - 1.2	-Vs + 1.1		+Vs - 1.2	v
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 1.4$		+Vs – 1.3	$-V_{s} + 1.4$		+V _s - 1.3	v
Output Swing	$V_{s} = \pm 5 V \text{ to } \pm 18 V$	$-V_{s} + 1.2$		+Vs - 1.4	$-V_{s} + 1.2$		+V _s - 1.4	v
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 1.6$		$+V_{s} - 1.5$	$-V_{s} + 1.6$		+V _s - 1.5	v
Short-Circuit Current			18			18		mA

		AR Grade			BR Gra	de		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
TEMPERATURE RANGE								
Specified Performance		-40		+85	-40		+85	°C
Operating Range ⁴		-40		+125	-40		+125	°C

 1 Total RTI V_{os} = (V_{os}) + (V_{os})/G). 2 Does not include the effects of external resistor R_G. 3 One input grounded. G = 1. 4 See Typical Performance Characteristics for expected operation between 85°C to 125°C.

Table	2.
-------	----

			ARM G	rade	
Parameter	Conditions	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)					
CMRR DC to 60 Hz with 1 k Ω Source Imbalance	$V_{CM} = -10 V$ to $+10 V$				
G = 1		80			dB
G = 10		100			dB
G = 100		120			dB
G = 1000		130			dB
CMRR at 10 kHz	$V_{CM} = -10 V \text{ to } +10 V$				
G = 1		80			dB
G = 10		90			dB
G = 100		100			dB
G = 1000		100			dB
NOISE	RTI noise = $\sqrt{e_{NI}^2 + (e_{NO}/G)^2}$				
Voltage Noise, 1 kHz					
Input Voltage Noise, e _{NI}	$V_{IN+}, V_{IN-}, V_{REF} = 0$			8	nV/√Hz
Output Voltage Noise, e _{NO}				75	nV/√Hz
RTI	f = 0.1 Hz to 10 Hz				
G = 1			2		μV p-p
G = 10			0.5		μV p-p
G = 100 to 1000			0.25		μV p-p
Current Noise	f = 1 kHz		40		fA/√Hz
	f = 0.1 Hz to 10 Hz		6		pA p-p
VOLTAGE OFFSET ¹					
Input Offset, Vosi	$V_s = \pm 5 V \text{ to } \pm 15 V$			70	μV
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			135	μV
Average TC				0.9	μV/°C
Output Offset, Voso	$V_s = \pm 5 V \text{ to } \pm 15 V$			600	μV
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			1.00	mV
Average TC				9	μV/°C
Offset RTI vs. Supply (PSR)	$V_{s} = \pm 2.3 V \text{ to } \pm 18 V$				
G = 1		90	100		dB
G = 10		100	120		dB
G = 100		120	140		dB
G = 1000		120	140		dB
INPUT CURRENT					
Input Bias Current			0.5	2	nA
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			3	nA
Average TC			3		pA/°C
Input Offset Current			0.3	1	nA
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			1.5	nA
Average TC			3		pA/°C

			ARM Gra	ade		
Parameter	Conditions	Min	Тур	Max	Unit	
REFERENCE INPUT						
R _{IN}			20		kΩ	
l _{iN}	$V_{IN+r}V_{IN-r}V_{REF}=0$		50	60	μA	
Voltage Range		-Vs		+Vs	V	
Gain to Output			1 ± 0.000	1	V/V	
POWER SUPPLY						
Operating Range	$V_{s} = \pm 2.3 V \text{ to } \pm 18 V$	±2.3		±18	V	
Quiescent Current			0.9	1	mA	
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$		1	1.2	mA	
DYNAMIC RESPONSE						
Small Signal –3 dB Bandwidth						
G = 1			825		kHz	
G = 10			562		kHz	
G = 100			100		kHz	
G = 1000			14.7		kHz	
Settling Time 0.01%	10 V step					
G = 1 to 100			10		μs	
G = 1000			80		μs	
Settling Time 0.001%	10 V step					
G = 1 to 100			13		μs	
G = 1000			110		μs	
Slew Rate	G = 1	1.5	2		V/µs	
	G = 5 to 100	2	2.5		V/µs	
GAIN	$G = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$	2	2.5		v/µ5	
Gain Range		1		1000	V/V	
Gain Error	V _{OUT} ± 10 V			1000	v, v	
G = 1				0.1	%	
G = 10				0.3	%	
G = 100				0.3	%	
G = 1000 G = 1000				0.3	%	
Gain Nonlinearity	$V_{OUT} = -10 V to + 10 V$			0.5	70	
G = 1 to 10	$R_{\rm L} = 10 \ \rm k\Omega$		5	15	nnm	
G = 100	$R_L = 10 \text{ k}\Omega$ $R_L = 10 \text{ k}\Omega$		5 7	20	ppm	
G = 100 G = 1000	$R_L = 10 \text{ k}\Omega$ $R_L = 10 \text{ k}\Omega$		7 10	20 50	ppm	
					ppm	
G = 1 to 100	$R_L = 2 k\Omega$		15	100	ppm	
Gain vs. Temperature			2	10	196	
G = 1 $G > 1^2$			3	10	ppm/°C	
				-50	ppm/°C	
INPUT						
Input Impedance					60 / F	
Differential			100 2		GΩ/pF	
Common Mode			100 2		GΩ/pF	
Input Operating Voltage Range ³	$V_{s} = \pm 2.3 V \text{ to } \pm 5 V$	-Vs + 1.9		+Vs - 1.1	V	
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 2.0$		+V _s - 1.2	V	
Input Operating Voltage Range	$V_s = \pm 5 V \text{ to } \pm 18 V$	-Vs + 1.9		+Vs - 1.2	V	
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	$-V_{s} + 2.0$		+V _s - 1.2	V	
OUTPUT	$R_L = 10 \ k\Omega$					
Output Swing	$V_s = \pm 2.3 V$ to $\pm 5 V$	-Vs + 1.1		+Vs - 1.2	V	
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	-Vs + 1.4		+Vs - 1.3	V	
Output Swing	$V_s = \pm 5 V \text{ to } \pm 18 V$	$-V_{s} + 1.2$		$+V_{s} - 1.4$	V	
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$	-Vs + 1.6		+Vs - 1.5	V	
Short-Circuit Current			18		mA	

Rev. B | Page 6 of 24

			ARM Grade		
Parameter	Conditions	Min	Тур	Max	Unit
TEMPERATURE RANGE					
Specified Performance		-40		+85	°C
Operating Range ⁴		-40		+125	°C

 1 Total RTI V_{os} = (V_{os}) + (V_{os})/G). 2 Does not include the effects of external resistor R_G. 3 One input grounded. G = 1. 4 See Typical Performance Characteristics for expected operation between 85°C to 125°C.

ABSOLUTE MAXIMUM RATINGS

Table 3.

	1	
	Parameter	Rating
	Supply Voltage	±18 V
	Internal Power Dissipation	200 mW
	Output Short-Circuit Current	Indefinite
	Input Voltage (Common-Mode)	$\pm V_{S}$
	Differential Input Voltage	±Vs
	Storage Temperature Range	–65°C to +150°C
	Operating Temperature Range ¹	–40°C to +125°C
-		

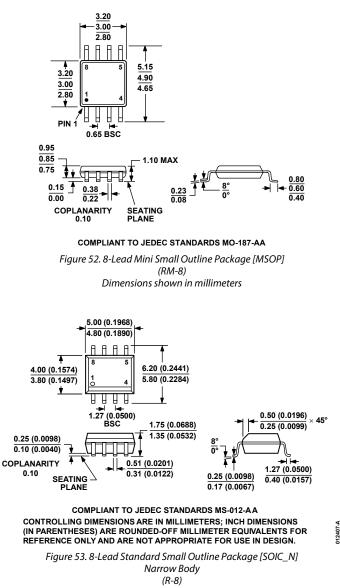
¹ Temperature range for specified performance is -40°C to +85°C. See Typical Performance Characteristics for expected operation from 85°C to 125°C.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Specification for a device in free air.

Table 4.


Package	θ _{JA}	Unit
8-Lead SOIC, 4-Layer JEDEC Board	121	°C/W
8-Lead MSOP, 4-Layer JEDEC Board	135	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

	Temperature Range for	Operating ¹		Package	
Model	Specified Performance	Temperature Range	Package Description	Option	Branding
AD8221AR	-40°C to +85°C	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8221AR-REEL	–40°C to +85°C	–40°C to +125°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8221AR-REEL7	-40°C to +85°C	–40°C to +125°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8221ARZ ²	–40°C to +85°C	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8221ARZ-R7 ²	-40°C to +85°C	-40°C to +125°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8221ARZ-RL ²	–40°C to +85°C	-40°C to +125°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8221ARM	-40°C to +85°C	–40°C to +125°C	8-Lead MSOP	RM-8	JLA
AD8221ARM-REEL	–40°C to +85°C	–40°C to +125°C	8-Lead MSOP, 13" Tape and Reel	RM-8	JLA
AD8221ARM REEL7	-40°C to +85°C	–40°C to +125°C	8-Lead MSOP, 7" Tape and Reel	RM-8	JLA
AD8221ARMZ ²	–40°C to +85°C	-40°C to +125°C	8-Lead MSOP	RM-8	JLA#
AD8221ARMZ-R7 ²	-40°C to +85°C	-40°C to +125°C	8-Lead MSOP, 7" Tape and Reel	RM-8	JLA#
AD8221ARMZ-RL ²	–40°C to +85°C	-40°C to +125°C	8-Lead MSOP, 13" Tape and Reel	RM-8	JLA#
AD8221BR	-40°C to +85°C	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8221BR-REEL	–40°C to +85°C	–40°C to +125°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8221BR-REEL7	-40°C to +85°C	–40°C to +125°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8221-EVAL			Evaluation Board		

¹ See Typical Performance Characteristics for expected operation from 85°C to 125°C. ² Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.