
Designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range.

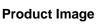
N-Channel enhancement mode

- Guaranteed 28V, 150 MHz performance Output power = 5.0 watts Minimum gain = 11 dB Efficiency = 55% (Typical)
- Small– and large–signal characterization
- Typical performance at 400 MHz, 28V, 5.0W Output = 10.6 dB gain
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low noise figure: 2.0 dB (Typ.) at 200 mA, 150 MHz
- Excellent thermal stability, ideally suited for Class A operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)	V _{DGR}	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	I _D	0.9	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	17.5 0.1	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta_{JC}}$	10	°C/W

Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

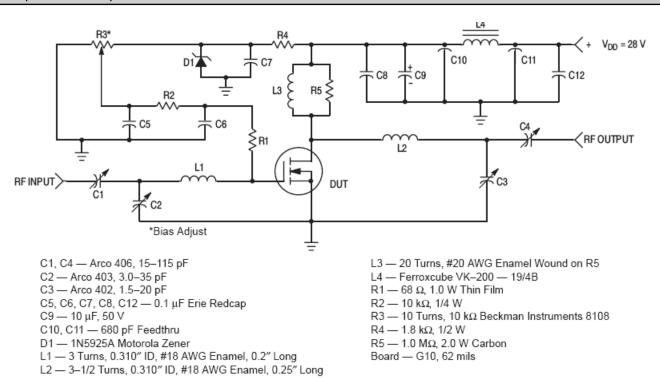
PRELIMINARY: Data Sheets contain information regarding a product WA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Products Released - Rev. 05202009

Downloaded from **Elcodis.com** electronic components distributor

M/A-COM Products Released - Rev. 05202009

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 5.0 mA)	V _{(BR)DSS}	65	_	—	Vdc
Zero Gate Voltage Drain Current (V_{DS} = 28 V, V_{GS} = 0)	I _{DSS}	_	—	1.0	mAdc
Gate-Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	I _{GSS}	—	—	1.0	μAdc
ON CHARACTERISTICS					
Gate Threshold Voltage (I _D = 10 mA, V _{DS} = 10 V)	V _{GS(th)}	1.0	3.5	6.0	Vdc
Forward Transconductance (V_{DS} = 10 V, I_D = 100 mA)	9 _{fs}	80	110	_	mmhos
DYNAMIC CHARACTERISTICS					1
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	7.0	_	pF
Output Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1.0 MHz)	C _{oss}	_	9.7	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	2.3	_	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 28 Vdc, I _D = 200 mA, f = 150 MHz)	NF	_	2.0	_	dB
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 5.0 W, I _{DQ} = 50 mA)	G _{ps}				dB
f = 150 MHz (Fig. 1) f = 400 MHz (Fig. 14)		11	14 10.6	_	
Drain Efficiency (Fig. 1) (V _{DD} = 28 Vdc, P _{out} = 5.0 W, f = 150 MHz, I _{DQ} = 50 mA)	η	50	55	—	%
Electrical Ruggedness (Fig. 1) (V _{DD} = 28 Vdc, P _{out} = 5.0 W, f = 150 MHz, I _{DQ} = 50 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

Figure 1. 150 MHz Test Circuit

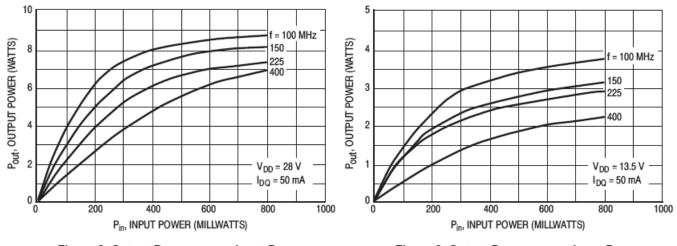


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

3

M/A-COM Products Released - Rev. 05202009

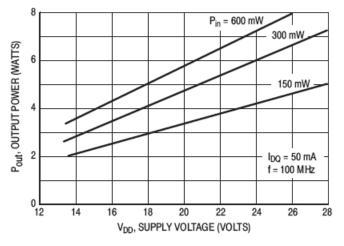


Figure 4. Output Power versus Supply Voltage

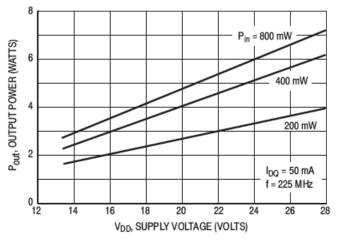


Figure 6. Output Power versus Supply Voltage

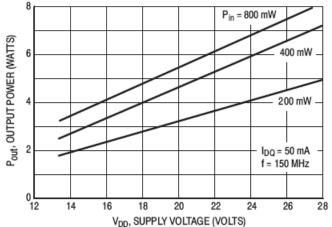
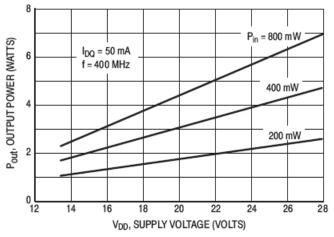
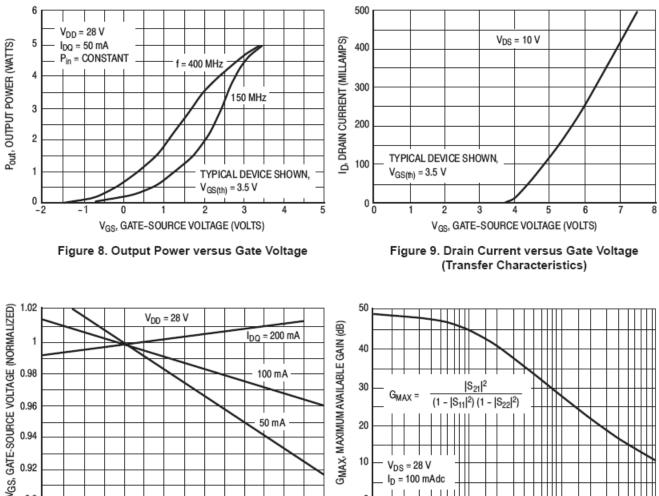


Figure 5. Output Power versus Supply Voltage




Figure 7. Output Power versus Supply Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

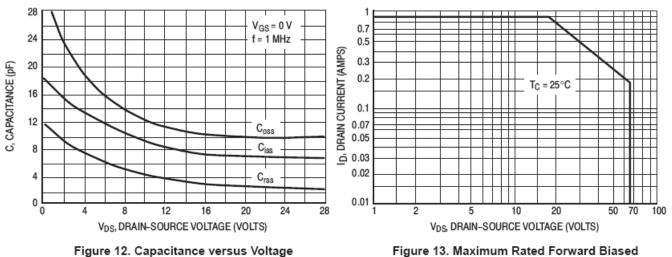
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

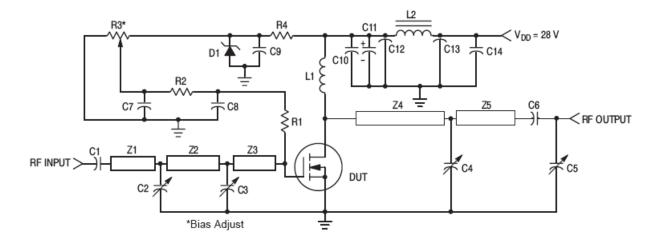
GMAX, MAXIMUM AVAILABLE GAIN (dB) 0.94 10 V_{DS} = 28 V 0.92 I_D = 100 mAdc 0.9 0 -25 0 25 50 75 100 125 150 10 100 T_C, CASE TEMPERATURE (°C) f, FREQUENCY (MHz)

Figure 10. Gate-Source Voltage versus **Case Temperature**

1000


5

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


- North America Tel: 800.366.2266 / Fax: 978.366.2266 ٠
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

Safe Operating Area

- C1, C6 270 pF, ATC 100 mils C2, C3, C4, C5 — 0–20 pF Johanson C7, C9, C10, C14 — 0.1 μ F Erie Redcap, 50 V C8 — 0.001 μ F C11 — 10 μ F, 50 V C12, C13 — 680 pF Feedthru D1 — 1N5925A Motorola Zener L1 — 6 Turns, 1/4" ID, #20 AWG Enamel L2 — Ferroxcube VK–200 — 19/4B R1 — 68 Ω , 1.0 W Thin Film
- $\begin{array}{l} \text{R2} & = 10 \ \text{k}\Omega, \ 1/4 \ \text{W} \\ \text{R3} & = 10 \ \text{Turns}, \ 10 \ \text{k}\Omega \ \text{Beckman Instruments} \ 8108 \\ \text{R4} & = 1.8 \ \text{k}\Omega, \ 1/2 \ \text{W} \\ \text{Z1} & = 1.4'' \ \text{x} \ 0.166'' \ \text{Microstrip} \\ \text{Z2} & = 1.1'' \ \text{x} \ 0.166'' \ \text{Microstrip} \\ \text{Z3} & = 0.95'' \ \text{x} \ 0.166'' \ \text{Microstrip} \\ \text{Z4} & = 2.2'' \ \text{x} \ 0.166'' \ \text{Microstrip} \\ \text{Z5} & = 0.85'' \ \text{x} \ 0.166'' \ \text{Microstrip} \\ \text{Board} & = \text{Glass Teflon, \ 62 \ mils} \end{array}$

Figure 14. 400 MHz Test Circuit

6

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

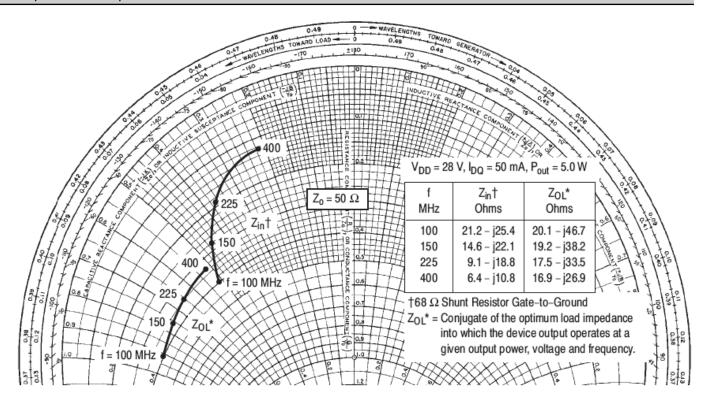


Figure 15. Large–Signal Series Equivalent Input/Output Impedances, Z_{in}[†], Z_{OL}*

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

MRF134

The RF MOSFET Line: Broadband RF Power FET 5.0W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

f	\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
(MHz)	S ₁₁	∠¢	\$ ₂₁	∠¢	S ₁₂	$\angle \phi$	S ₂₂	∠¢
1.0	0.989	-1.0	11.27	179	0.0014	89	0.954	-1.0
2.0	0.989	-2.0	11.27	179	0.0028	89	0.954	-2.0
5.0	0.988	-5.0	11.26	176	0.0069	86	0.954	-4.0
10	0.985	-10	11.20	173	0.014	83	0.951	-9.0
20	0.977	-20	10.99	166	0.027	76	0.938	-18
30	0.965	-30	10.66	159	0.039	69	0.918	-26
40	0.950	-39	10.25	153	0.051	63	0.895	-34
50	0.931	-47	9.777	147	0.060	57	0.867	-42
60	0.912	-53	9.359	142	0.069	53	0.846	-49
70	0.892	-58	8.960	138	0.077	49	0.828	-56
80	0.874	-62	8.583	135	0.085	46	0.815	-62
90	0.855	-66	8.190	131	0.091	43	0.801	-68
100	0.833	-70	7.808	128	0.096	40	0.785	-74
110	0.827	-73	7.661	125	0.101	38	0.784	-77
120	0.821	-76	7.515	122	0.107	36	0.784	-82
130	0.814	-79	7.368	119	0.113	34	0.784	-85
140	0.808	-82	7.222	116	0.119	32	0.783	-88
150	0.802	-86	7.075	114	0.125	31	0.783	-90
160	0.788	-89	6.810	112	0.127	30	0.780	-92
170	0.774	-92	6.540	110	0.128	28	0.774	-94
180	0.763	-94	6.220	108	0.130	26	0.762	-98
190	0.751	-97	5.903	106	0.132	24	0.760	-100
200	0.740	-100	5.784	104	0.134	23	0.758	-103
225	0.719	-104	5.334	100	0.136	20	0.757	-107
250	0.704	-108	4.904	97	0.139	19	0.758	-110
275	0.687	-113	4.551	92	0.141	16	0.757	-114
300	0.673	-117	4.219	89	0.141	14	0.750	-117
325	0.668	-120	3.978	86	0.142	12	0.757	-120
350	0.669	-123	3.737	83	0.142	10	0.766	-121
375	0.662	-125	3.519	80	0.143	9.0	0.768	-123
400	0.654	-127	3.325	77	0.142	8.0	0.772	-124
425	0.650	-129	3.170	75	0.140	7.0	0.772	-125
450	0.638	-131	3.048	72	0.141	6.0	0.783	-125
475	0.614	-132	2.898	71	0.136	6.0	0.786	-126
500	0.641	-133	2.833	68	0.136	5.0	0.795	-127
525	0.638	-135	2.709	66	0.135	5.0	0.801	-127
550	0.633	-137	2.574	64	0.133	4.0	0.802	-128
575	0.628	-138	2.481	62	0.131	5.0	0.805	-128
600	0.625	-140	2.408	60	0.129	5.0	0.814	-128

The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components. (continued)

Table 1. Common Source Scattering Parameters

 V_{DS} = 28 V, I_D = 100 mA

8

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. *M/A-COM Technology Solution Commitment to produce in volume is not guaranteed. M/A-COM Technology Solution Commitment to produce in volume is not guaranteed.*

M/A-COM Products Released - Rev. 05202009

f S		\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
(MHz)	S ₁₁	$\angle \phi$	\$ ₂₁	∠¢	S ₁₂	$\angle \phi$	\$ ₂₂	∠¢	
625	0.619	-142	2.334	58	0.128	5.0	0.818	-129	
650	0.617	-144	2.259	56	0.125	6.0	0.824	-130	
675	0.618	-146	2.192	55	0.123	7.0	0.834	-130	
700	0.619	-147	2.124	53	0.122	8.0	0.851	-131	
725	0.618	-150	2.061	51	0.120	9.0	0.859	-132	
750	0.614	-152	1.983	49	0.118	11	0.857	-133	
775	0.609	-154	1.908	48	0.119	13	0.865	-133	
800	0.562	-155	1.877	49	0.118	15	0.872	-133	
825	0.587	-156	1.869	46	0.119	16	0.869	-134	
850	0.593	-158	1.794	44	0.118	18	0.875	-135	
875	0.597	-160	1.749	43	0.119	18	0.881	-135	
900	0.598	-162	1.700	41	0.118	18	0.889	-136	
925	0.592	-164	1.641	40	0.115	18	0.888	-138	
950	0.588	-166	1.590	39	0.112	20	0.877	-138	
975	0.586	-168	1.572	39	0.108	23	0.864	-137	
1000	0.590	-171	1.551	37	0.107	28	0.863	-137	

The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components.

Table 1. Common Source Scattering Parameters (continued) V_{DS} = 28 V, I_D = 100 mA

9

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

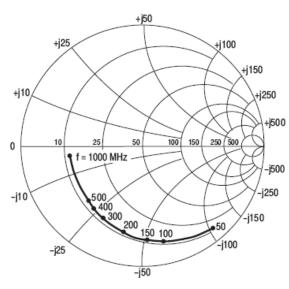
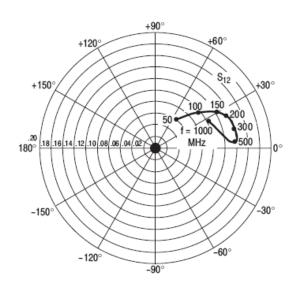
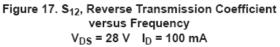
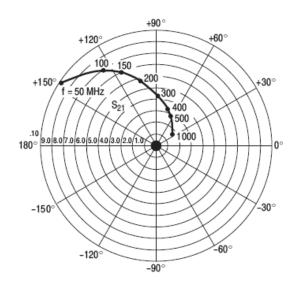
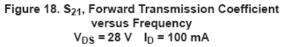






Figure 16. S₁₁, Input Reflection Coefficient versus Frequency V_{DS} = 28 V I_D = 100 mA

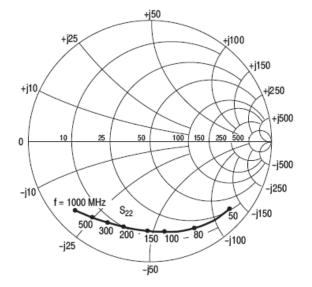


Figure 19. S₂₂, Output Reflection Coefficient versus Frequency V_{DS} = 28 V I_D = 100 mA

10

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

changes to the product(s) or information contained herein without notice.

M/A-COM Products Released - Rev. 05202009

RF POWER MOSFET CONSIDERATIONS

DESIGN CONSIDERATIONS

The MRF137 is a RF power N–Channel enhancementmode field–effect transistor (FET) designed especially for VHF power amplifier applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V– groove vertical power FETs.

M/A-COM Application Note AN211A, FETs in Theory and-Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance.

The value of quiescent drain current (IDQ) is not critical formany applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple

resistive divider network. Some special applications may require a more elaborate bias system.

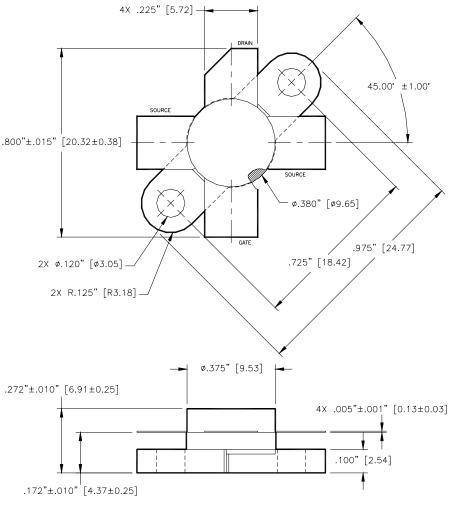
GAIN CONTROL

Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 sparameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See M/A-COM Application Note AN215A for a discussion of two port network theory and stability.


11

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

Unless otherwise noted, tolerances are inches $\pm.005$ " [millimeters ±0.13 mm]

12

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.