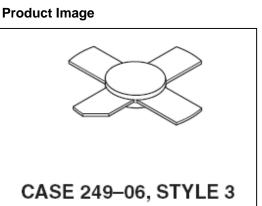


M/A-COM Products


Released - Rev. 07.07


The RF MOSFET Line: Broadband Power FET 4W, to 500MHz, 28V

Designed primarily for wideband large-signal output and driver from 30–500 MHz.

N-Channel enhancement mode MOSFET

- Guaranteed 28 V, 500 MHz performance Output power = 4.0 W Gain = 16 dB (min.) Efficiency = 55% (typ.)
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques
- 100% Tested for load mismatch at all phase angles with 30:1 VSWR
- Low Crss 0.8 pF Typical at VDS = 28 V

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain–Gate Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	65	Vdc
Gate-Source Voltage	VGS	± 20	Vdc
Drain Current–Continuous	۱D	1.0	ADC
Total Device Dissipation @ T _C = 25°C Derate Above 25°C	PD	24 0.14	Watts W/∘C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C
THERMAL CHARACTERISTICS			
Thermal Resistance — Junction to Case	R ₀ JC	7.2	°C/W

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

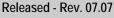
1

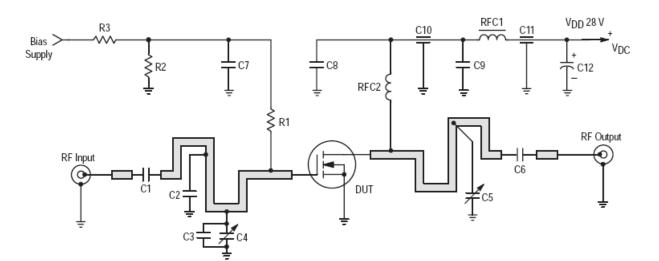
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Products

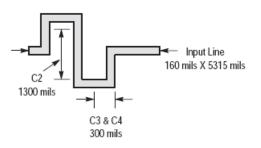
Released - Rev. 07.07

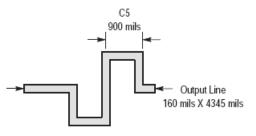

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain–Source Breakdown Voltage (V _{DS} = 0 Vdc, V _{GS} = 0 Vdc, I _D = 1.0 mA)	V(BR)DSS	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 V)	IDSS	_	_	0.5	mA
Gate–Source Leakage Current (V _{GS} = 20 Vdc, V _{DS} = 0 Vdc)	IGSS	_	_	1.0	μA
ON CHARACTERISTICS	•				
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 10 mA)	V _{GS(th)}	1.5	3.0	4.5	Vdc
Drain Source On–Voltage (VDS (on), VGS = 10 Vdc, ID = 500 mA)	V _{DS(on)}	_	3.8	_	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 250 mA)	9fs	150	220	_	mS
DYNAMIC CHARACTERISTICS					
Input Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 V, f = 1.0 MHz)	C _{iss}	_	6.0	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	6.5	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{rss}	_	0.8	_	pF
FUNCTIONAL CHARACTERISTICS	· · ·				
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 4.0 W, f = 500 MHz, I _{DQ} = 50 mA)	G _{ps}	16	18	_	dB
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 4.0 W, f = 500 MHz, I _{DQ} = 50 mA)	η	50	55	_	%
Electrical Ruggedness (V _{DD} = 28 Vdc, P _{out} = 4.0 W, f = 500 MHz, I _{DQ} = 50 mA) Load VSWR = 30:1 at All Phase Angles at Frequency of Test	Ψ	No [Degradation in	Output Pow	er
Series Equivalent Input Impedance (V _{DD} = 28 Vdc, P _{out} = 4.0 W, f = 500 MHz, I _{DQ} = 50 mA)	Z _{in}	_	6.8 – j21	_	Ohms
Series Equivalent Output Impedance (V _{DD} = 28 Vdc, P _{out} = 4.0 W, f = 500 MHz, I _{DQ} = 50 mA)	Z _{out}	_	21 – j28	_	Ohms

- 2
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products




C1, C6	240 pF, 100 mil Chip Capacitors
C2	15 pF, 100 mil ATC Chip Capacitor
C4, C5	1-10 pF, Johanson Trimmer Capacitors
C3	24 pF, 100 mil ATC Chip Capacitor
C7, C9	0.1 μF, 100 mil Chip Capacitors
C8	220 pF, 100 mil ATC Chip Capacitor
010 011	

C10, C11 680 pF, Feed Through Capacitors C12 50 µF, 50 V Electrolytic Capacitor

R1	200 Ω, 1/2 Watt
R2	10 kΩ, 1/2 Watt
R3	1 kΩ, 1/2 Watt
RFC1	Ferroxcube VK200–19/4B
RFC2	8 Turns, #20 AWG, Enameled, ID 110 mils

Board Material - 0.062", Teflon[®] Fiberglass, 1 oz., Copper clad both sides, $\varepsilon_r = 2.55$

NOTE: Due to variation in Chip Capacitor values and board material, these are approximate positions.

Figure 1. MRF160 500 MHz Test Circuit

3

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 07.07

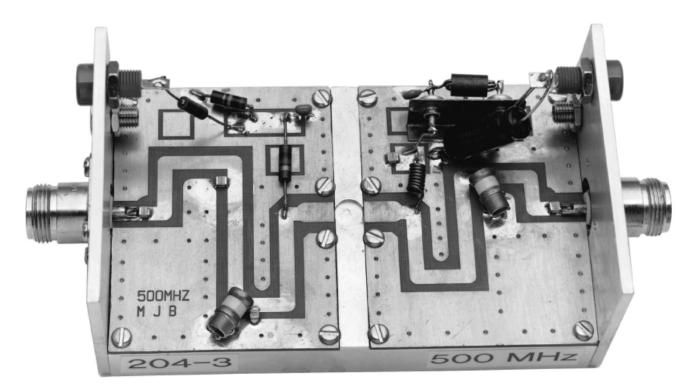


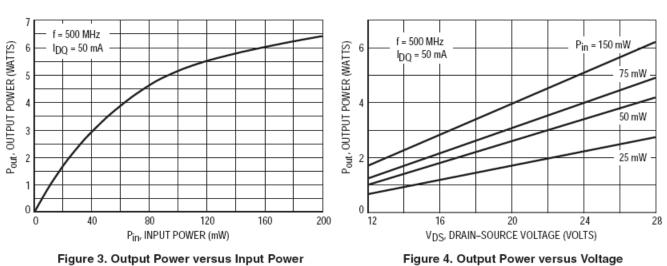
Figure 2. MRF160 Broadband Test Fixture

4

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

f = 1.0 MHz


VGS = 0 V

24

28

The RF MOSFET Line: Broadband Power FET 4W, to 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

TYPICAL CHARACTERISTICS

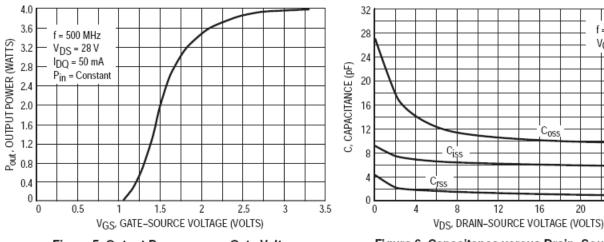
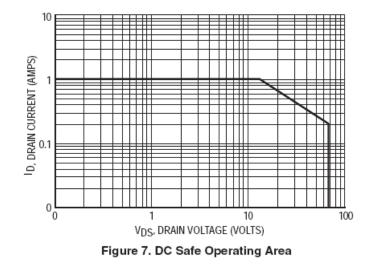


Figure 5. Output Power versus Gate Voltage


Figure 6. Capacitance versus Drain–Source Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 07.07

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

6

M/A-COM Products

Table 1. Common Source S–Parameters (V _{DS} = 12.5 V, I _D = 120 mA)									
f	S ₁₁		S ₂₁			12	\$22		
MHz	^S 11	¢	S ₂₁	¢	S ₁₂	φ	S ₂₂	¢	
30	0.991	-19	15.80	166	0.019	77	0.938	-19	
40	0.970	-25	15.50	161	0.025	72	0.933	-25	
50	0.959	-31	15.20	156	0.030	67	0.918	-31	
60	0.943	-37	14.80	151	0.035	63	0.900	-37	
70	0.925	-42	14.30	147	0.040	59	0.880	-42	
80	0.912	-48	13.90	143	0.044	56	0.863	-47	
85	0.903	51	13.70	141	0.046	54	0.857	-49	
90	0.896	-53	13.50	139	0.048	52	0.851	-52	
100	0.872	-58	12.90	135	0.051	48	0.830	-57	
110	0.853	-63	12.40	131	0.054	46	0.812	-60	
120	0.841	-67	11.90	128	0.056	43	0.796	-63	
130	0.831	-71	11.50	126	0.059	40	0.788	-67	
140	0.814	-75	11.10	122	0.061	37	0.777	-70	
150	0.797	-79	10.70	119	0.063	34	0.760	-74	
160	0.782	-82	10.20	117	0.064	32	0.739	-78	
170	0.776	85	9.81	115	0.066	32	0.740	-79	
180	0.769	89	9.55	112	0.068	28	0.737	-83	
190	0.754	-92	9.24	109	0.069	25	0.725	-87	
200	0.737	-94	8.83	107	0.068	23	0.707	-90	
210	0.731	-96	8.47	105	0.068	22	0.692	-92	
220	0.730	-99	8.20	103	0.069	21	0.692	-94	
230	0.724	-101	7.94	101	0.071	20	0.697	-95	
240	0.713	-104	7.69	99	0.072	16	0.696	-99	
250	0.705	-106	7.44	97	0.070	15	0.676	-100	
260	0.699	-108	7.18	96	0.070	15	0.673	-102	
270	0.697	-109	6.91	94	0.070	14	0.661	-103	
280	0.697	-111	6.70	93	0.071	13	0.654	-104	
290	0.693	-113	6.54	92	0.071	11	0.658	-106	
300	0.686	-115	6.36	90	0.072	9	0.664	-108	
310	0.679	-116	6.12	88	0.069	7	0.639	-111	
320	0.679	-117	5.96	87	0.070	9	0.642	-110	
330	0.679	-119	5.80	86	0.070	8	0.648	-112	
340	0.679	-121	5.63	84	0.071	7	0.648	-114	
350	0.674	-122	5.47	83	0.070	5	0.645	-114	
360	0.669	-123	5.33	82	0.070	4	0.650	-116	
370	0.667	-124	5.18	80	0.068	3	0.644	-118	
380	0.672	-124	5.02	80	0.066	3	0.614	-119	
390	0.675	-127	4.96	78	0.071	4	0.655	-116	
400	0.672	-129	4.83	77	0.070	2	0.655	-119	
410	0.668	-129	4.83	75	0.069	0	0.654	-121	
410	0.666	-130	4.70	75	0.069	-1	0.654	-121	
420	0.667	-131	4.56	74	0.067	-1	0.644	-122	

Table 1. Common Source S–Parameters (V_{DS} = 12.5 V, I_D = 120 mA)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. **MRF160**

The RF MOSFET Line: Broadband Power FET 4W, to 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 120 mA) (continued)										
f ^S 11		11	S ₂₁		S	s ₁₂		S ₂₂		
MHz	S ₁₁	¢	S ₂₁	¢	S ₁₂	φ	S ₂₂	¢		
440	0.671	-132	4.39	72	0.066	-1	0.651	-123		
450	0.670	-134	4.29	71	0.068	-1	0.663	-123		
460	0.662	-135	4.15	70	0.067	-6	0.677	-127		
470	0.663	-135	4.05	69	0.065	-5	0.664	-127		
480	0.666	-136	3.95	68	0.064	-5	0.663	-128		
490	0.670	-137	3.88	67	0.064	-5	0.663	-128		
500	0.670	-138	3.81	66	0.063	-6	0.670	-128		
600	0.693	-147	3.06	55	0.053	-17	0.689	-136		
700	0.708	-152	2.61	46	0.044	-14	0.723	-142		
800	0.731	-158	2.22	40	0.037	-15	0.733	-146		
900	0.724	-165	1.93	32	0.037	-32	0.760	-151		
1000	0.748	-169	1.73	28	0.027	-6	0.778	-153		

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 120 mA) (continued)

8

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MRF160

The RF MOSFET Line: Broadband Power FET 4W, to 500MHz, 28V

Downloaded from Elcodis.com electronic components distributor

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

9

Table 2. Common Source	S_Parameters	$(V_{DO} = 28)$	$(\ln - 250 mA)$
Table 2. Common Source	5-Parameters	(VDS = 20 V	r_{1} , r_{1} = 250 mA)

f	S	11	S	21	S	12	S ₂₂		
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ	
30	0.995	-18	15.00	167	0.014	78	0.919	-15	
40	0.978	-24	14.70	162	0.018	73	0.913	-19	
50	0.971	-30	14.50	158	0.022	69	0.900	-23	
60	0.961	-36	14.20	153	0.026	65	0.885	-28	
70	0.947	-41	13.80	149	0.029	62	0.867	-32	
80	0.938	-46	13.40	145	0.033	58	0.851	-35	
85	0.932	-49	13.30	143	0.034	56	0.845	-37	
90	0.927	51	13.10	141	0.036	55	0.839	-39	
100	0.908	-56	12.70	138	0.038	51	0.825	-43	
110	0.893	61	12.20	134	0.040	49	0.802	-46	
120	0.884	-65	11.80	131	0.043	46	0.788	-48	
130	0.875	-69	11.40	128	0.045	44	0.781	-51	
140	0.862	-74	11.10	125	0.047	40	0.772	-54	
150	0.848	-78	10.70	122	0.048	37	0.754	-57	
160	0.836	81	10.30	119	0.049	35	0.733	-60	
170	0.830	-84	9.86	117	0.050	35	0.718	-60	
180	0.824	-88	9.64	115	0.053	31	0.729	-64	
190	0.813	-91	9.38	112	0.053	29	0.719	-67	
200	0.798	-94	9.00	109	0.053	26	0.701	-70	
210	0.792	-96	8.63	107	0.053	25	0.682	-72	
220	0.790	-98	8.36	105	0.054	24	0.677	-73	
230	0.785	-101	8.10	104	0.055	22	0.677	-75	
240	0.777	-104	7.92	101	0.057	19	0.694	-78	
250	0.769	-106	7.65	99	0.055	18	0.663	-80	
260	0.764	-108	7.40	97	0.055	18	0.662	81	
270	0.761	-109	7.13	96	0.055	17	0.649	-82	
280	0.760	-111	6.91	95	0.055	16	0.640	-82	

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

MRF160

The RF MOSFET Line: Broadband Power FET 4W, to 500MHz, 28V

Table 2. Common Source S-Parameters (V_{DS} = 28 V, I_D = 250 mA) (continued)

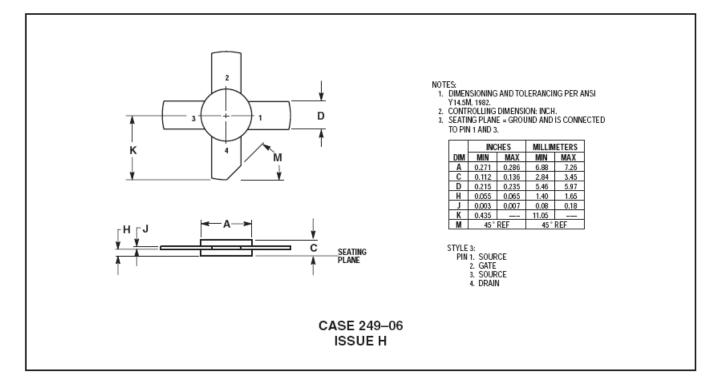
f	S	11	S	21	\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	¢
290	0.757	-113	6.75	93	0.055	14	0.641	-84
300	0.751	-115	6.59	91	0.056	12	0.645	-86
310	0.743	-117	6.37	89	0.055	9	0.635	-90
320	0.744	-118	6.17	88	0.054	11	0.619	-89
330	0.744	-120	6.01	87	0.055	11	0.628	-90
340	0.743	-121	5.85	85	0.055	10	0.629	-92
350	0.738	-123	5.70	84	0.055	8	0.629	-92
360	0.733	-124	5.55	82	0.054	6	0.631	-94
370	0.730	-126	5.40	81	0.054	4	0.623	-96
380	0.732	-127	5.21	80	0.052	4	0.593	-98
390	0.737	-129	5.17	79	0.055	7	0.627	-93
400	0.734	-130	5.04	77	0.055	4	0.639	-97
410	0.731	-131	4.92	76	0.054	3	0.641	-99
420	0.728	-132	4.78	75	0.052	1	0.630	-100
430	0.729	-133	4.67	74	0.051	0	0.628	-101
440	0.731	-134	4.57	72	0.051	1	0.626	-102
450	0.731	-136	4.47	71	0.053	1	0.630	-102
460	0.723	-137	4.37	69	0.054	-4	0.673	-106
470	0.724	-137	4.24	68	0.050	-3	0.647	-107
480	0.727	-138	4.13	68	0.049	-3	0.642	-108
490	0.730	-139	4.05	67	0.048	-3	0.641	-107
500	0.730	-140	3.99	66	0.048	-4	0.647	-108
600	0.736	-150	3.54	56	0.037	-14	0.657	-118
700	0.745	-156	2.99	46	0.029	-9	0.699	-126
800	0.765	-161	2.54	39	0.025	-5	0.713	-131
900	0.759	-168	2.20	31	0.022	-34	0.742	-136
1000	0.769	-173	1.98	27	0.018	19	0.756	-139

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. • North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Downloaded from Elcodis.com electronic components distributor



M/A-COM Products Released - Rev. 07.07

M/A-COM Products Released - Rev. 07.07

PACKAGE DIMENSIONS

11

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.