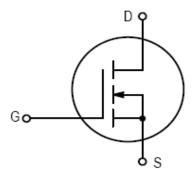
The RF MOSFET Line 30W, to 400MHz, 28V

Designed for wideband large signal output and drive stages up to 400 MHz range.


- N-Channel enhancement mode
- Guaranteed 28 V, 150 MHz performance Output power = 30 W Minimum gain = 13 dB Efficiency — 60% (Typical)
- Small- and large-signal characterization
- Typical performance at 400 MHz, 28 Vdc, 30 W output = 7.7 dB gain
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low noise figure 1.5 dB (typ.) at 1.0 A, 150 MHz
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques

M/A-COM Products Released - Rev. 05202009

CASE 211-07, STYLE 2

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ID	2.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	55 0.314	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	ů
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{ØJC}	3.2	°C/W

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product WA-COM Technology Solutions has under development. Deformance in heard a peripacting tarto. Specifications are
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

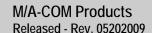
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM chances to chances

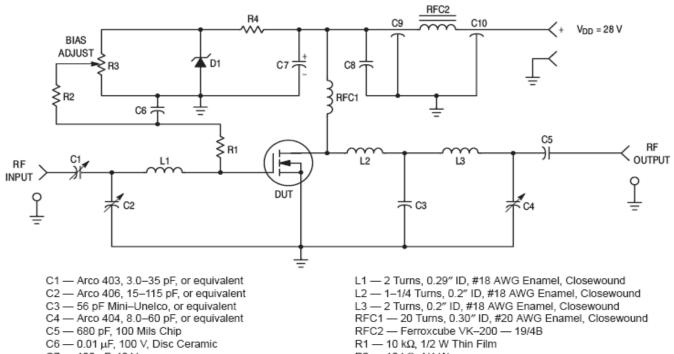
1

The RF MOSFET Line 30W, to 400MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 05202009


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 10 mA)	V(BR)DSS	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0)	I _{DSS}	_	-	4.0	mAdc
Gate-Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	I _{GSS}	_	-	1.0	μAdc
ON CHARACTERISTICS			•		•
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 25 mA)	V _{GS(th)}	1.0	3.0	6.0	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 500 mA)	g _{fs}	500	750	_	mmhos
DYNAMIC CHARACTERISTICS			•		•
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Ciss	_	48	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Coss	_	54	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	11	_	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 28 Vdc, I _D = 1.0 A, f = 150 MHz)	NF	—	1.5	—	dB
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz (Figure 1) I _{DQ} = 25 mA) f = 400 MHz (Figure 14)	G _{ps}	13 —	16 7.7		dB
Drain Efficiency (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 25 mA)	η	50	60	_	%
Electrical Ruggedness (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at All Phase Angles)	Ψ	No Degradation in Output Power			


2

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 30W, to 400MHz, 28V

- C7 100 µF, 40 V
- C8 0.1 µF, 50 V, Disc Ceramic
- C9, C10 680 pF Feedthru
- D1 1N5925A Motorola Zener

R2 - 10 kΩ, 1/4 W R3 - 10 Turns, 10 kΩ R4 - 1.8 kΩ, 1/2 W Board - G10, 62 Mils

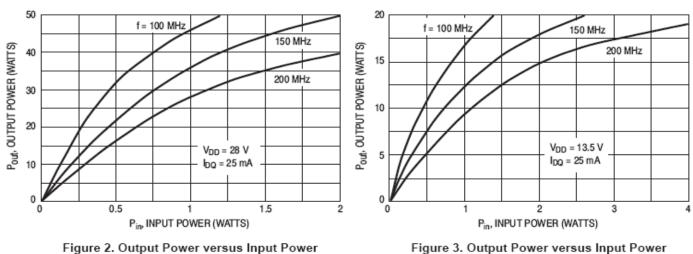


Figure 3. Output Power versus Input Power

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Vertical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

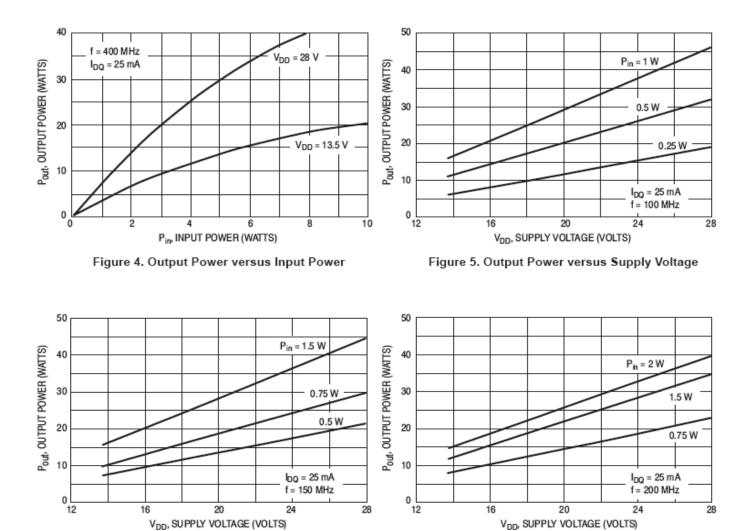


Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

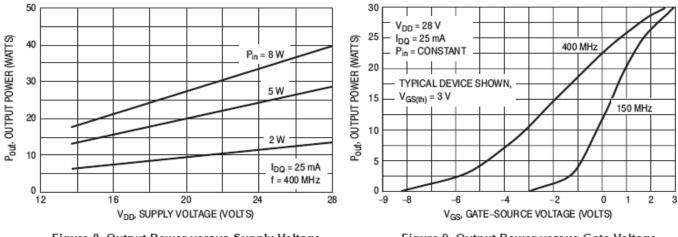
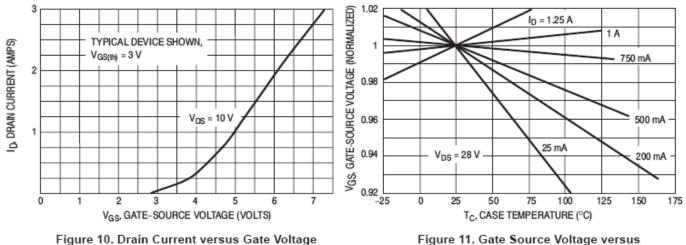



Figure 8. Output Power versus Supply Voltage

Figure 9. Output Power versus Gate Voltage

(Transfer Characteristics)

jure 11. Gate Source Voltage versi Case Temperature

5

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

200

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

180 T_C = 25°C 5 V_{GS} = 0 V 160 DRAIN CURRENT (AMPS) f = 1 MHz 140 C, CAPACITANCE (pF) 2 120 Coss 1 100 80 Ciss 0.5 60 C_{rss} ò 40 20 0 L 0 0.1 4 8 12 16 20 24 28 2 5 10 20 60 100 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) VDS, DRAIN-SOURCE VOLTAGE (VOLTS) Figure 12. Capacitance versus Figure 13. DC Safe Operating Area Drain-Source Voltage RFC2 R4 C10 C11 V_{DD} = 28 V BIAS C12 C13 ADJUST 🛣 D1 R3 ÷ RFC1 C9 R2 ≶ RF R1 Z4 Z5 Z6 OUTPUT RF Z1 Z2 Z3 INPUT Ċ5 DUT C7 C3 C4C6 7 C2 C. ÷ C1, C2, C3, C4 - 0-20 pF Johanson, or equivalent R4 — 1.8 kΩ, 1/2 W C5, C8 - 270 pF, 100 Mil Chip Z1 - 2.9" x 0.166" Microstrip C6, C7 - 24 pF Mini-Unelco, or equivalent Z2, Z4 - 0.35" x 0.166" Microstrip C9 - 0.01 µF, 100 V, Disc Ceramic Z3 - 0.40" x 0.166" Microstrip C10 - 100 µF, 40 V Z5 - 1.05" x 0.166" Microstrip C11 - 0.1 µF, 50 V, Disc Ceramic Z6 - 1.9" x 0.166" Microstrip RFC1 - 6 Turns, 0.300" ID, #20 AWG Enamel, Closewound C12, C13 - 680 pF Feedthru D1 — 1N5925A Motorola Zener RFC2 — Ferroxcube VK-200 — 19/4B R1, R2 - 10 kΩ, 1/4 W Board — Glass Teflon, 62 Mils

10

Figure 14. 400 MHz Test Circuit

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

R3 - 10 Turns, 10 kΩ

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 30W, to 400MHz, 28V

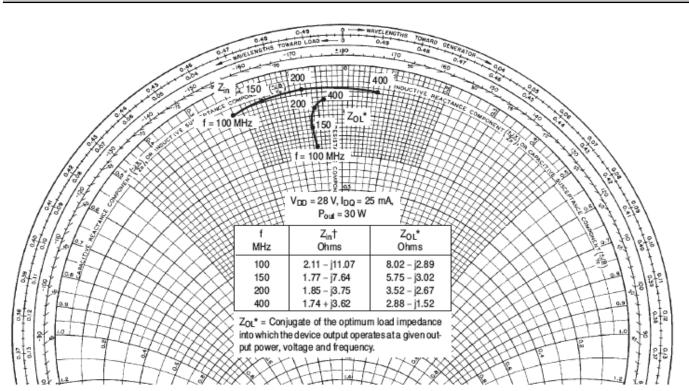


Figure 15. Large-Signal Series Equivalent Input and Output Impedance, Zin, ZOL*

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Technology Solutions

M/A-COM Products

Released - Rev. 05202009

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

7

M/A-COM Products

Released - Rev. 05202009

(MHz) (By1) $2 + 0$ (By2) $2 - 4$ 2.0 0.977 -32 59.48 163 0.011 67 0.661 -36 5.0 0.919 -70 48.67 163 0.024 444 0.662 -78 10 0.852 -109 33.50 122 0.032 29 0.747 -117 20 0.814 -153 13.11 99 0.038 14 0.774 -157 40 0.811 -169 9.88 95 0.038 11 0.777 -168 50 0.812 -164 5.708 86 0.038 11 0.787 -176 60 0.816 -170 5.003 84 0.038 11 0.787 -177 100 0.817 -171 4.570 81 0.039 13 0.788 -173 110 0.817 -173 3.420 79 0.039 13 0.788	f	S ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
5.0 0.919 -70 48.67 142 0.024 44 0.692 -78 10 0.852 -109 33.60 122 0.032 29 0.747 -117 20 0.814 -153 13.11 99 0.038 14 0.747 -162 40 0.811 -159 9.88 95 0.038 11 0.777 -162 50 0.812 -164 7.98 92 0.038 11 0.787 -162 60 0.813 -166 6.66 89 0.038 11 0.787 -170 90 0.817 -171 4.500 83 0.038 11 0.787 -172 110 0.818 -173 3.420 79 0.39 13 0.788 -173 120 0.821 -173 3.420 79 0.39 14		S ₁₁	∠¢	S ₂₁	∠¢	S ₁₂	∠¢	S ₂₂	∠¢
10 0.852 -109 33.50 122 0.032 29 0.747 -117 20 0.817 -140 19.05 106 0.37 16 0.768 -143 30 0.814 -153 13.11 99 0.038 11 0.767 -162 50 0.812 -164 7.98 92 0.038 12 0.787 -162 60 0.813 -166 6.66 89 0.038 11 0.787 -169 70 0.815 -168 5.003 84 0.038 11 0.787 -179 90 0.817 -171 4.560 86 0.038 11 0.787 -171 100 0.817 -171 4.560 83 0.039 13 0.787 -172 110 0.820 -173 3.420 79 0.039 13 0.788 -173 120 0.820 -173 3.420 79 0.039 13 0.788 -173 140 0.822 -175 2.826 77 0.039 14 0.788 -173 150 0.823 -175 2.826 77 0.039 14 0.790 -174 160 0.824 -175 2.826 77 0.039 14 0.790 -174 170 0.825 -176 2.325 73 0.039 14 0.792 -174 180 0.827 -176 2.325 73	2.0	0.977	-32	59.48	163	0.011	67	0.661	-36
20 0.817 -140 19.05 106 0.037 16 0.768 -146 30 0.814 -153 13.11 99 0.038 14 0.774 -157 40 0.811 -159 9.88 95 0.038 12 0.772 -162 50 0.812 -164 7.98 92 0.038 12 0.787 -165 60 0.813 -166 6.66 89 0.038 11 0.787 -176 70 0.815 -170 5.003 84 0.038 11 0.787 -170 90 0.817 -171 4.560 83 0.038 12 0.787 -171 100 0.817 -171 4.560 83 0.038 12 0.787 -172 110 0.818 -173 3.670 80 0.039 13 0.788 -172 120 0.820 -173 3.420 79 0.039 13 0.788 -173 130 0.821 -175 2.826 77 0.039 14 0.798 -173 140 0.822 -174 2.980 78 0.039 14 0.798 -173 150 0.823 -175 2.826 77 0.039 14 0.792 -174 170 0.825 -176 2.438 75 0.039 14 0.792 -174 190 0.829 -177 2.175 72 <	5.0	0.919	-70	48.67	142	0.024	44	0.692	-78
300.814-15313.11990.038140.774-157400.811-1599.88950.038130.782-162500.812-1647.98920.038120.787-165600.813-1666.66890.038110.787-165700.815-1685.708860.038110.787-170900.817-1714.560830.038120.787-1711000.817-1724.170810.039130.787-1721100.818-1733.420790.039130.788-1731300.821-1742.980780.039130.788-1731500.823-1752.826770.039140.790-1741700.825-1762.432750.039140.792-1741800.824-1772.250730.39140.792-1741900.824-1762.325730.39140.796-1741900.822-1762.432750.039160.796-1741900.824-1781.824690.039180.805-1742500.836-1781.824690.039180.802-1742550.853-1791	10	0.852	-109	33.50	122	0.032	29	0.747	-117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	0.817	-140	19.05	106	0.037	16	0.768	-146
50 0.812 -164 7.98 92 0.038 12 0.787 -165 60 0.813 -166 6.66 89 0.038 11 0.787 -168 70 0.815 -170 5.003 84 0.038 11 0.787 -170 90 0.817 -171 4.560 83 0.038 11 0.787 -171 100 0.817 -172 4.170 81 0.039 13 0.787 -172 110 0.817 -172 4.170 81 0.039 13 0.788 -173 120 0.820 -173 3.420 79 0.039 13 0.788 -173 130 0.821 -173 3.470 79 0.039 13 0.788 -173 140 0.822 -177 2.960 76 0.039 14 0.788 -173 150 0.823 -175 2.826 77 0.039 14 0.789 -173 160 0.824 -175 2.650 76 0.039 14 0.792 -174 170 0.825 -176 2.325 73 0.039 16 0.793 -174 190 0.827 -178 1.824 69 0.039 16 0.799 -174 250 0.836 -178 1.824 69 0.039 18 0.805 -174 225 0.836 -1	30	0.814	-153	13.11	99	0.038	14	0.774	-157
60 0.813 -166 6.66 89 0.038 12 0.787 -168 70 0.815 -168 5.708 86 0.038 11 0.787 -169 80 0.816 -170 5.003 84 0.038 11 0.787 -170 90 0.817 -171 4.560 83 0.038 12 0.787 -171 100 0.817 -172 4.170 81 0.039 13 0.787 -172 110 0.818 -173 3.420 79 0.039 13 0.788 -173 130 0.821 -173 3.420 79 0.039 13 0.788 -173 140 0.822 -174 2.980 76 0.039 14 0.788 -173 150 0.823 -175 2.826 77 0.039 14 0.788 -173 150 0.824 -175 2.826 77 0.039 14 0.790 -174 170 0.824 -175 2.826 77 0.039 14 0.792 -174 180 0.827 -176 2.325 73 0.039 14 0.799 -174 200 0.836 -177 2.175 72 0.039 16 0.799 -174 225 0.836 -178 1.824 69 0.039 18 0.822 -174 225 0.866 $-$	40	0.811	-159	9.88	95	0.038	13	0.782	-162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.812	-164	7.98	92	0.038	12	0.787	-165
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60	0.813	-166	6.66	89	0.038	12	0.787	-168
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	0.815	-168	5.708	86	0.038	11	0.787	-169
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	80	0.816	-170	5.003	84	0.038	11	0.787	-170
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	0.817	-171	4.560	83	0.038	12	0.787	-171
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	0.817	-172	4.170	81	0.039	13	0.787	-172
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	0.818	-173	3.670	80	0.039	13	0.788	-172
140 0.822 -174 2.980 78 0.039 13 0.788 -173 150 0.823 -175 2.826 77 0.039 14 0.788 -173 160 0.824 -175 2.650 76 0.039 14 0.790 -174 170 0.825 -176 2.438 75 0.039 14 0.792 -174 180 0.827 -176 2.325 73 0.039 16 0.796 -174 190 0.829 -177 2.175 72 0.039 16 0.796 -174 200 0.831 -177 2.084 71 0.039 16 0.799 -174 225 0.836 -178 1.621 66 0.039 23 0.822 -174 250 0.846 -178 1.462 64 0.039 23 0.822 -174 275 0.853 -179 1.462 64 0.039 23 0.822 -174 300 0.853 -179 1.99 56 0.040 27 0.828 -174 350 0.857 $+179$ 1.048 54 0.042 32 0.842 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 450 0.881 $+178$ 0.927 51 0.043 35 0.856 -174 450 0.881 $+178$ 0.876 <	120	0.820	-173	3.420	79	0.039	13	0.788	-173
150 0.823 175 2.826 77 0.039 14 0.788 173 160 0.824 175 2.650 76 0.039 14 0.790 174 170 0.825 176 2.438 75 0.039 14 0.792 174 180 0.827 176 2.325 73 0.039 16 0.796 174 190 0.829 177 2.175 72 0.039 16 0.796 174 200 0.831 177 2.084 71 0.039 16 0.799 174 225 0.836 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.621 66 0.039 23 0.822 174 300 0.853 179 1.462 64 0.039 23 0.822 174 350 0.856 179 1.99 56 0.400 27 0.828 174 350 0.857 $+.179$ 1.048 56 0.040 30 0.842 174 450 0.881 $+.178$ 0.927 51 0.043 35 0.856 174 450 0.881 $+.178$ 0.876 49 0.045 37 0.866 174	130	0.821	-173	3.170	79	0.039	13	0.788	-173
150 0.823 175 2.826 77 0.039 14 0.788 173 160 0.824 175 2.650 76 0.039 14 0.790 174 170 0.825 176 2.438 75 0.039 14 0.792 174 180 0.827 176 2.325 73 0.039 16 0.796 174 190 0.829 177 2.175 72 0.039 16 0.796 174 200 0.831 177 2.084 71 0.039 16 0.799 174 225 0.836 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.621 66 0.039 23 0.822 174 300 0.853 179 1.462 64 0.039 23 0.822 174 350 0.856 179 1.99 56 0.400 27 0.828 174 350 0.857 $+.179$ 1.048 56 0.040 30 0.842 174 450 0.881 $+.178$ 0.927 51 0.043 35 0.856 174 450 0.881 $+.178$ 0.876 49 0.045 37 0.866 174	140	0.822	-174	2.980	78	0.039	13	0.788	-173
160 0.824 175 2.650 76 0.039 14 0.790 174 170 0.825 176 2.438 75 0.039 14 0.792 174 180 0.827 176 2.325 73 0.039 15 0.793 174 190 0.829 177 2.175 72 0.039 16 0.796 174 200 0.831 177 2.084 71 0.039 16 0.799 174 225 0.836 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.621 66 0.039 23 0.822 174 275 0.853 179 1.462 64 0.039 23 0.822 174 300 0.853 179 1.194 59 0.040 27 0.828 174 350 0.857 $+.179$ 1.089 56 0.040 30 0.842 174 400 0.865 $+.178$ 0.927 51 0.043 35 0.866 174 450 0.881 $+.178$ 0.876 49 0.045 37 0.866 174 450 0.886 $+.177$ 0.755 44 0.046 43 0.875 174 550 0.886 $+.177$ 0.694 411 0.055 45 0.898 174 <t< td=""><td>150</td><td>0.823</td><td>-175</td><td>2.826</td><td>77</td><td>0.039</td><td>14</td><td></td><td>-173</td></t<>	150	0.823	-175	2.826	77	0.039	14		-173
180 0.827 -176 2.325 73 0.039 15 0.793 -174 190 0.829 -177 2.175 72 0.039 16 0.796 -174 200 0.831 -177 2.084 71 0.039 16 0.799 -174 225 0.836 -178 1.824 69 0.039 18 0.805 -174 250 0.846 -178 1.621 66 0.039 21 0.816 -174 275 0.853 -179 1.462 64 0.039 23 0.822 -174 300 0.853 -179 1.319 61 0.040 25 0.833 -174 325 0.856 -179 1.194 59 0.040 27 0.828 -174 350 0.857 $+179$ 1.089 56 0.040 30 0.842 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 450 0.881 $+178$ 0.810 46 0.045 37 0.866 -174 450 0.881 $+178$ 0.810 46 0.046 43 0.875 -174 450 0.886 $+177$ 0.755 44 0.046 43 0.875 -174 455 0.888 $+176$	160	0.824		2.650	76	0.039	14	0.790	
190 0.829 -177 2.175 72 0.039 16 0.796 -174 200 0.831 -177 2.084 71 0.039 16 0.799 -174 225 0.836 -178 1.824 69 0.039 18 0.805 -174 250 0.846 -178 1.621 66 0.039 21 0.816 -174 275 0.853 -179 1.462 64 0.039 23 0.822 -174 300 0.853 -179 1.319 61 0.040 25 0.833 -174 325 0.856 -179 1.194 59 0.040 27 0.828 -174 350 0.857 $+179$ 1.089 56 0.040 30 0.842 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 425 0.875 $+178$ 0.927 51 0.043 35 0.866 -174 450 0.881 $+178$ 0.876 49 0.045 37 0.866 -174 450 0.881 $+178$ 0.876 49 0.045 37 0.866 -174 450 0.887 $+177$ 0.755 44 0.046 43 0.875 -174 450 0.881 $+176$ 0.677 39 0.052 43 0.890 -174 550 0.896 $+176$ 0.625	170	0.825		2.438	75	0.039	14		
190 0.829 -177 2.175 72 0.039 16 0.796 -174 200 0.831 -177 2.084 71 0.039 16 0.799 -174 225 0.836 -178 1.824 69 0.039 18 0.805 -174 250 0.846 -178 1.621 66 0.039 21 0.816 -174 275 0.853 -179 1.462 64 0.039 23 0.822 -174 300 0.853 -179 1.319 61 0.040 25 0.833 -174 325 0.856 -179 1.194 59 0.040 27 0.828 -174 350 0.857 $+179$ 1.089 56 0.040 30 0.842 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 425 0.875 $+178$ 0.927 51 0.043 35 0.866 -174 450 0.881 $+178$ 0.876 49 0.045 37 0.866 -174 450 0.881 $+178$ 0.876 49 0.045 37 0.866 -174 450 0.887 $+177$ 0.755 44 0.046 43 0.875 -174 450 0.881 $+176$ 0.677 39 0.052 43 0.890 -174 550 0.896 $+176$ 0.625	180	0.827	-176	2.325	73	0.039	15	0.793	-174
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	190	0.829	-177		72	0.039	16		-174
225 0.836 178 1.824 69 0.039 18 0.805 174 250 0.846 178 1.621 66 0.039 21 0.816 174 275 0.853 179 1.462 64 0.039 23 0.822 174 300 0.853 179 1.319 61 0.040 25 0.833 174 325 0.856 179 1.194 59 0.040 27 0.828 174 350 0.857 $+.179$ 1.089 56 0.040 30 0.842 174 375 0.861 $+.179$ 1.014 54 0.042 32 0.849 174 400 0.865 $+.178$ 0.927 51 0.043 35 0.856 174 425 0.875 $+.178$ 0.876 49 0.045 37 0.866 174 425 0.881 $+.178$ 0.876 49 0.045 37 0.866 174 450 0.881 $+.178$ 0.876 49 0.045 37 0.866 174 450 0.881 $+.178$ 0.876 49 0.046 43 0.875 174 550 0.886 $+.177$ 0.755 44 0.046 43 0.875 174 550 0.896 $+.176$ 0.625 36 0.055 45 0.988 174 <td< td=""><td>200</td><td>0.831</td><td></td><td></td><td>71</td><td>0.039</td><td>16</td><td>0.799</td><td>-174</td></td<>	200	0.831			71	0.039	16	0.799	-174
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225	0.836			69	0.039	18	0.805	-174
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250				66	0.039	21	0.816	
300 0.853 -179 1.319 61 0.040 25 0.833 -174 325 0.856 -179 1.194 59 0.040 27 0.828 -174 350 0.857 +179 1.089 56 0.040 30 0.842 -174 375 0.861 +179 1.014 54 0.042 32 0.849 -174 400 0.865 +178 0.927 51 0.043 35 0.856 -174 425 0.875 +178 0.927 51 0.043 35 0.866 -174 450 0.881 +178 0.876 49 0.045 37 0.866 -174 450 0.881 +178 0.810 46 0.046 40 0.870 -174 475 0.886 +177 0.755 44 0.046 43 0.875 -174 500 0.887 +177 0.694	275	0.853			64	0.039	23		
325 0.856 -179 1.194 59 0.040 27 0.828 -174 350 0.857 $+179$ 1.089 56 0.040 30 0.842 -174 375 0.861 $+179$ 1.014 54 0.042 32 0.849 -174 400 0.865 $+178$ 0.927 51 0.043 35 0.856 -174 425 0.875 $+178$ 0.876 49 0.045 37 0.866 -174 450 0.881 $+178$ 0.810 46 0.046 40 0.870 -174 450 0.881 $+178$ 0.810 46 0.046 43 0.875 -174 450 0.881 $+177$ 0.755 44 0.046 43 0.875 -174 475 0.886 $+177$ 0.755 44 0.046 43 0.875 -174 500 0.887 $+177$ 0.694 41 0.051 43 0.888 -174 555 0.888 $+176$ 0.677 39 0.052 43 0.890 -174 555 0.896 $+176$ 0.625 36 0.055 45 0.913 -174 555 0.907 $+175$ 0.603 34 0.058 45 0.913 -174 600 0.910 $+175$ 0.585 32 0.061 45 0.945 -174 650 0.920 <	300	0.853	-179	1.319	61	0.040			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	325	0.856	-179	1.194	59	0.040		0.828	-174
4000.865+1780.927510.043350.856-1744250.875+1780.876490.045370.866-1744500.881+1780.810460.046400.870-1744750.886+1770.755440.046430.875-1745000.887+1770.694410.051430.888-1745250.888+1760.677390.052430.890-1745500.896+1760.625360.055450.898-1745500.896+1760.625360.058450.913-1745500.907+1750.603340.058450.913-1746000.910+1750.585320.061450.918-1746500.920+1740.563300.065450.945-1746750.938+1730.533260.074470.974-1747000.943+1700.491220.079460.953-1777500.940+1700.475220.084480.943-177	350	0.857		1.089	56	0.040	30	0.842	-174
4000.865+1780.927510.043350.856-1744250.875+1780.876490.045370.866-1744500.881+1780.810460.046400.870-1744750.886+1770.755440.046430.875-1745000.887+1770.694410.051430.888-1745250.888+1760.677390.052430.890-1745500.896+1760.625360.055450.898-1745500.896+1760.625360.058450.913-1745500.907+1750.603340.058450.913-1746000.910+1750.585320.061450.918-1746500.920+1740.563300.065450.945-1746750.938+1730.533260.074470.974-1747000.943+1700.491220.079460.953-1777500.940+1700.475220.084480.943-177	375	0.861	+179	1.014	54	0.042	32	0.849	-174
4250.875+1780.876490.045370.866-1744500.881+1780.810460.046400.870-1744750.886+1770.755440.046430.875-1745000.887+1770.694410.051430.888-1745250.888+1760.677390.052430.890-1745500.896+1760.625360.055450.898-1745750.907+1750.603340.058450.913-1746000.910+1750.585320.061450.918-1746250.910+1740.563300.065450.945-1746500.920+1740.543280.069460.952-1746750.938+1730.533260.074470.974-1747000.943+1710.515240.078470.958-1767250.934+1700.491220.079460.953-1777500.940+1700.475220.084480.943-177	400	0.865		0.927	51	0.043	35	0.856	-174
4500.881+1780.810460.046400.870-1744750.886+1770.755440.046430.875-1745000.887+1770.694410.051430.888-1745250.888+1760.677390.052430.890-1745500.896+1760.625360.055450.898-1745750.907+1750.603340.058450.913-1746000.910+1750.585320.061450.918-1746250.910+1740.563300.065450.945-1746500.920+1740.543280.069460.952-1746750.938+1730.533260.074470.974-1747000.943+1710.515240.078470.958-1767250.934+1700.491220.079460.953-1777500.940+1700.475220.084480.943-177	425		+178	0.876	49	0.045	37	0.866	-174
4750.886+1770.755440.046430.875-1745000.887+1770.694410.051430.888-1745250.888+1760.677390.052430.890-1745500.896+1760.625360.055450.898-1745750.907+1750.603340.058450.913-1746000.910+1750.585320.061450.918-1746250.910+1740.563300.065450.945-1746500.920+1740.543280.069460.952-1746750.938+1730.533260.074470.974-1747000.943+1700.491220.079460.953-1777500.940+1700.475220.084480.943-177	450	0.881		0.810	46	0.046	40	0.870	
525 0.888 +176 0.677 39 0.052 43 0.890 -174 550 0.896 +176 0.625 36 0.055 45 0.898 -174 575 0.907 +175 0.603 34 0.058 45 0.913 -174 600 0.910 +175 0.585 32 0.061 45 0.918 -174 625 0.910 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.978 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491	475	0.886	+177	0.755	44	0.046	43	0.875	-174
550 0.896 +176 0.625 36 0.055 45 0.898 -174 575 0.907 +175 0.603 34 0.058 45 0.913 -174 600 0.910 +175 0.585 32 0.061 45 0.918 -174 625 0.910 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	500	0.887	+177	0.694	41	0.051	43	0.888	-174
575 0.907 +175 0.603 34 0.058 45 0.913 -174 600 0.910 +175 0.585 32 0.061 45 0.918 -174 625 0.910 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	525	0.888	+176	0.677	39	0.052	43	0.890	-174
600 0.910 +175 0.585 32 0.061 45 0.918 -174 625 0.910 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	550	0.896	+176	0.625	36	0.055	45	0.898	-174
600 0.910 +175 0.585 32 0.061 45 0.918 -174 625 0.910 +174 0.563 30 0.065 45 0.945 -174 650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	575	0.907	+175	0.603	34	0.058	45	0.913	-174
650 0.920 +174 0.543 28 0.069 46 0.952 -174 675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177									
675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	625	0.910	+174	0.563	30	0.065	45	0.945	-174
675 0.938 +173 0.533 26 0.074 47 0.974 -174 700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177									
700 0.943 +171 0.515 24 0.078 47 0.958 -176 725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177									-174
725 0.934 +170 0.491 22 0.079 46 0.953 -177 750 0.940 +170 0.475 22 0.084 48 0.943 -177	700					0.078			-176
750 0.940 +170 0.475 22 0.084 48 0.943 -177									
	750	0.940		0.475	22	0.084	48	0.943	-177
(75 0.953 +169 0.477 21 0.090 48 0.957 -177	775	0.953	+169	0.477	21	0.090	48	0.957	-177
800 0.959 +168 0.467 17 0.093 48 0.957 -179						0.093			-179

Table 1. Common Source Scattering Parameters

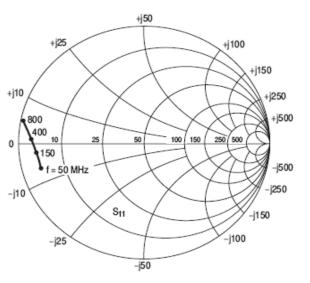
50 Ω System

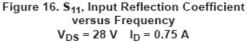
 $V_{DS} = 28 \text{ V}, I_D = 0.75 \text{ A}$

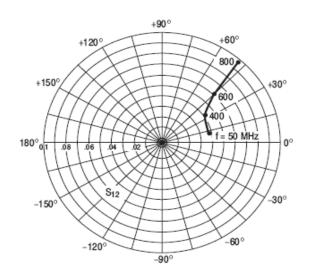
8

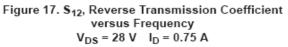
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.


PRELIMINARY: Data Sheets contain information regarding a product WA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.




M/A-COM Products


Released - Rev. 05202009

The RF MOSFET Line 30W, to 400MHz, 28V

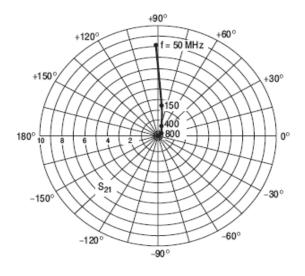


Figure 18. S_{21} , Forward Transmission Coefficient versus Frequency $V_{DS} = 28 \text{ V}$ I_D = 0.75 A

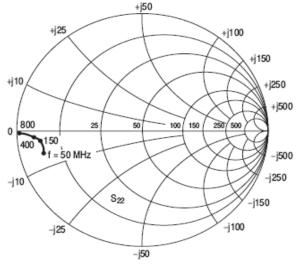


Figure 19. S_{22} , Output Reflection Coefficient versus Frequency $V_{DS} = 28 \text{ V}$ I_D = 0.75 A

9

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

olume is not guaranteed. changes to the product(s) or information contained herein without notice.

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

RF POWER MOSFET CONSIDERATIONS

DESIGN CONSIDERATIONS

The MRF137 is a RF power N–Channel enhancementmode field–effect transistor (FET) designed especially for VHF power amplifier applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V– groove vertical power FETs.

M/A-COM Application Note AN211A, FETs in Theory and-Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance.

The value of quiescent drain current (IDQ) is not critical formany applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. **GAIN CONTROL**

Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 sparameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See M/A-COM Application Note AN215A for a discussion of two port network theory and stability.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Commitment to produce in volume is not guaranteed.

The RF MOSFET Line

30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

4X .225" [5.72] DRAIN X 45.00° ±1.00° SOURCE .800"±.015" [20.32±0.38] SOURCE × ø.380" [ø9.65] GATE .975" [24.77] .725" [18.42] 2X Ø.120" [Ø3.05] 2X R.125" [R3.18] ø.375" [9.53] .272"±.010" [6.91±0.25] 4X .005"±.001" [0.13±0.03] .100" [2.54] .172"±.010" [4.37±0.25]

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

11