FEATURES

High Speed

80 MHz Bandwidth ($3 \mathrm{~dB}, \mathbf{G}=+1$)
75 MHz Bandwidth ($\mathbf{3 d B}, \mathbf{G}=+2$)
1000 V/ us Slew Rate
50 ns Settling Time to 0.1% ($\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$ Step)
Ideal for Video Applications
30 MHz Bandwidth ($\mathbf{0 . 1} \mathrm{dB}, \mathbf{G}=+2$)
0.02\% Differential Gain
0.04° Differential Phase
Low Noise
$2.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Voltage Noise
$13 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Inverting Input Current Noise
Low Power
8.0 mA Supply Current max
2.1 mA Supply Current (Power-Down Mode)

High Performance Disable Function
Turn-Off Time 100 ns
Break Before Make Guaranteed
Input to Output Isolation of 64 dB (OFF State)
Flexible Operation
Specified for ± 5 V and ± 15 V Operation
$\pm 2.9 \mathrm{~V}$ Output Swing Into a 150Ω Load ($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$)

APPLICATIONS

Professional Video Cameras
Multimedia Systems
NTSC, PAL \& SECAM Compatible Systems
Video Line Driver
ADC/DAC Buffer
DC Restoration Circuits

Closed-Loop Gain and Phase vs. Frequency, G $=+2$, $R_{L}=150, R_{F}=715 \Omega$
REV. A

[^0]CONNECTION DIAGRAM
8-Pin Plastic Mini-DIP (N), SOIC (R) and Cerdip (Q) Packages

PRODUCT DESCRIPTION

The AD 810 is a composite and HDTV compatible, current feedback, video operational amplifier, ideal for use in systems such as multimedia, digital tape recorders and video cameras. The 0.1 dB flatness specification at bandwidth of 30 M Hz $(G=+2)$ and the differential gain and phase of 0.02% and 0.04° (NTSC) make the AD 810 ideal for any broadcast quality video system. All these specifications are under load conditions of 150Ω (one 75Ω back terminated cable).
The AD 810 is ideal for power sensitive applications such as video cameras, offering a low power supply current of 8.0 mA max. T he disable feature reduces the power supply current to only 2.1 mA , while the amplifier is not in use, to conserve power. Furthermore the AD810 is specified over a power supply range of $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
The AD 810 works well as an ADC or DAC buffer in video systems due to its unity gain bandwidth of 80 M Hz . Because the AD 810 is a transimpedance amplifier, this bandwidth can be maintained over a wide range of gains while featuring a low noise of $2.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ for wide dynamic range applications.

Differential Gain and Phase vs. Supply Voltage

AD810- SPECIFICATIONS

(@ $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{S}= \pm 15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ unless otherwise noted)

Parameter	Conditions	$\mathrm{V}_{\text {s }}$	AD810A			AD810 ${ }^{1}$			Units		
			Min	Typ	Max	Min	Typ	Max			
DYNAMIC PERFORMANCE 3 dB Bandwidth											
	$(G=+2) \mathrm{R}_{\mathrm{FB}}=715$	$\pm 5 \mathrm{~V}$	40	50		40	50		M Hz		
	$(\mathrm{G}=+2) \mathrm{R}_{\mathrm{FB}}=715$	$\pm 15 \mathrm{~V}$	55	75		55	75		M Hz		
	$(\mathrm{G}=+1) \mathrm{R}_{\mathrm{FB}}=1000$	$\pm 15 \mathrm{~V}$	40	80		40	80		M Hz		
	$(\mathrm{G}=+10) \mathrm{R}_{\mathrm{FB}}=270$	$\pm 15 \mathrm{~V}$	50	65		50	65		M Hz		
0.1 dB Bandwidth	$(\mathrm{G}=+2) \mathrm{R}_{\mathrm{FB}}=715$	$\pm 5 \mathrm{~V}$	13	22		13	22		M Hz		
	$(G=+2) \mathrm{R}_{\mathrm{FB}}=715$	$\pm 15 \mathrm{~V}$		30			30		M Hz		
Full Power Bandwidth	$\mathrm{V}_{0}=20 \mathrm{~V}$ - p ,										
	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	$\pm 15 \mathrm{~V}$		16			16		M Hz		
Slew Rate ${ }^{2}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	$\pm 5 \mathrm{~V}$		350			350		$\mathrm{V} / \mathrm{\mu s}$		
	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	$\pm 15 \mathrm{~V}$		1000			1000		V/us		
Settling Time to 0.1\% Settling Time to 0.01\%	10 V Step, $\mathrm{G}=-1$	$\pm 15 \mathrm{~V}$		50			50				
	10 V Step, G $=-1$	$\pm 15 \mathrm{~V}$		125			125		ns		
Differential Gain	$\mathrm{f}=3.58 \mathrm{M} \mathrm{Hz}$	$\pm 15 \mathrm{~V}$		0.02	0.05		0.02	0.05	\%		
	$\mathrm{f}-3.58 \mathrm{MHz}$	$\pm 5 \mathrm{~V}$		0.04	0.07		0.04	0.07			
Differential Phase	$\mathrm{f}=3.58 \mathrm{MHz}$	$\pm 15 \mathrm{~V}$		0.04	0.07		0.04	0.07	D egrees		
	$\mathrm{f}=3.58 \mathrm{M} \mathrm{Hz}$	$\pm 5 \mathrm{~V}$		0.045	0.08		0.045	0.08	D egrees		
T otal H armonic Distortion	$\begin{aligned} & f=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{G}=+2 \end{aligned}$	$\pm 15 \mathrm{~V}$					-61		dBC		
INPUT OFFSET VOLTAGE Offset Voltage D rift	$\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 6 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$		
```INPUT BIAS CURRENT -Input +Input```	$\begin{aligned} & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$		
OPEN-LOOP   TRAN SRESISTANCE	$\begin{aligned} & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{~V}_{0}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$		
$\begin{aligned} & \text { OPEN-LOOP } \\ & \text { DC VOLTAGE GAIN } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 86 \\ 76 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 88 \end{aligned}$		$\begin{aligned} & 80 \\ & 72 \end{aligned}$	$\begin{aligned} & 100 \\ & 88 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
```COMMON-MODE REJECTION VOS \pmInput Current```	$\begin{aligned} & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{V}_{\text {CM }}= \pm 12 \mathrm{~V} \\ & \mathrm{~V}_{\text {CM }}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 64 \\ & 60 \\ & 0.1 \end{aligned}$	0.4		$\begin{aligned} & 64 \\ & 60 \\ & 0.1 \end{aligned}$	0.4	dB dB $\mu \mathrm{A} / \mathrm{V}$		
```POWER SUPPLY REJECTION V OS \pmInput Current```	$\begin{aligned} & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \end{aligned}$	$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	65	$\begin{aligned} & 72 \\ & 0.05 \end{aligned}$	0.3	60	$\begin{aligned} & 72 \\ & 0.05 \end{aligned}$	0.3	$\begin{aligned} & \mathrm{dB} \\ & \mu \mathrm{~A} / \mathrm{V} \end{aligned}$		
INPUT VOLTAGE NOISE	$\mathrm{f}=1 \mathrm{kHz}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		2.9			2.9		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$		
INPUT CURRENT NOISE	$\begin{aligned} & -\mathrm{I}_{\mathrm{N},}, \mathrm{f}=1 \mathrm{kHz} \\ & +\mathrm{I}_{\mathrm{IN}}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 13 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$		
INPUT COMMON-MODE VOLTAGE RANGE		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 3.0 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 2.5 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
OUTPUT CHARACTERISTICS   O utput Voltage Swing ${ }^{3}$   Short-Circuit Current Output Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 12.5 \\ & \pm 12 \\ & 40 \end{aligned}$	$\begin{aligned} & \pm 2.9 \\ & \pm 12.9 \\ & 150 \\ & 60 \end{aligned}$		$\begin{aligned} & \pm 2.5 \\ & \pm 12.5 \\ & \pm 12 \\ & \\ & 30 \end{aligned}$	$\begin{aligned} & \pm 2.9 \\ & \pm 12.9 \\ & \\ & 150 \\ & 60 \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$		
OUTPUT RESISTANCE	Open Loop ( 5 M Hz )			15			15		$\Omega$		
IN PUT CHARACTERISTICS Input Resistance Input C apacitance	+Input   -Input   +Input	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$2.5$	$\begin{aligned} & 10 \\ & 40 \\ & 2 \end{aligned}$		$2.5$	$\begin{aligned} & 10 \\ & 40 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \Omega \\ & \mathrm{pF} \end{aligned}$		
DISABLECHARACTERISTICS ${ }^{4}$ OFF Isolation OFF Output Impedance	$\mathrm{f}=5 \mathrm{MHz}$, See F igure 43 See Figure 43			$\begin{gathered} 64 \\ \left.+R_{G}\right) \\| 13 \end{gathered}$			$\begin{gathered} 64 \\ \left.\mathrm{R}_{\mathrm{G}}\right) \\| 13 \end{gathered}$		dB		


Parameter	Conditions	Vs	AD810A			AD8105 ${ }^{1}$			Units
			Min	Typ	Max	Min	Typ	Max	
Turn On Time ${ }^{5}$	$\mathrm{Z}_{\text {Out }}=$ Low, See Figure 54			170			170		ns
Turn Off Time	$\mathrm{Z}_{\text {OUT }}=$ High			100			100		ns
Disable Pin Current	Disable Pin $=0 \mathrm{~V}$	$\pm 5 \mathrm{~V}$		50	75		50	75	$\mu \mathrm{A}$
		$\pm 15 \mathrm{~V}$		290	400		290	400	$\mu \mathrm{A}$
M in Disable Pin Current to Disable	$\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$	30			30			$\mu \mathrm{A}$
POWER SUPPLY									
Operating Range	$+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {max }}$		$\pm 2.5$		$\pm 18$	$\pm 2.5$		$\pm 18$	V
Quiescent Current	$\mathrm{T}_{\text {MIN }}$		$\pm 3.0$		$\pm 18$	$\pm 3.5$		$\pm 18$	V
		$\pm 5 \mathrm{~V}$		6.7	7.5		6.7	7.5	mA
		$\pm 15 \mathrm{~V}$		6.8	8.0		6.8	8.0	mA
Power-D own C urrent	$\mathrm{T}_{\text {MIN }} \mathrm{T}_{\text {M }}^{\text {MAX }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		8.3	10.0		9	11.0	mA
		$\pm 5 \mathrm{~V}$		1.8	2.3		1.8	2.3	mA
		$\pm 15 \mathrm{~V}$		2.1	2.8		2.1	2.8	mA

## NOTES

${ }^{1}$ See Analog D evices M ilitary D ata Sheet for 883B Specifications.
${ }^{2}$ Slew rate measurement is based on $10 \%$ to $90 \%$ rise time with the amplifier configured for a gain of -10 .
${ }^{3}$ V oltage Swing is defined as useful operating range, not the saturation range.
${ }^{4}$ D isable guaranteed break before make.
${ }^{5}$ T urn On T ime is defined with $\pm 5 \mathrm{~V}$ supplies using complementary output CMOS to drive the disable pin.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Supply Voltage ......................................... $\pm 18 \mathrm{~V}$ Internal Power Dissipation ${ }^{2}$....... Observe D erating Curves Output Short Circuit Duration .... Observe D erating Curves
C ommon-M ode Input Voltage . . . . . . . . . . . . . . . . . . . . . . . $\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage ................................ $\pm 6 \mathrm{~V}$
Storage T emperature Range
Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Small Outline IC ...................... $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
0 perating T emperature Range
AD810A ................................ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD810S ................................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead T emperature Range (Soldering 60 sec ) ........ $+300^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under "Absolute $M$ aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions abovethose indicated in the operational section of this specification is not implied. Exposure to absolute maximum raring conditions for extended periods may affect device reliability.
${ }^{2} 8$-Pin Plastic Package: $\theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} / \mathrm{W}$ att; 8 -Pin C erdip Package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W}$ att; 8 -Pin SOIC Package: $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$ att.

## ESD SUSCEPTIBILITY

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which readily accumulate on the human body and on test equipment, can discharge without detection. Although the AD 810 features ESD protection circuitry, permanent damage may still occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

## ORDERING GUIDE

Model	Temperature   Range	Package   Description	Package   Option
AD 810AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
AD 810AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic SOIC	R-8
AD 810AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic SOIC	R-8
5962-9313201M PA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Cerdip	Q-8

## MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD 810 is limited by the associated rise in junction temperature. F or the plastic packages, the maximum safe junction temperature is $145^{\circ} \mathrm{C}$. For the cerdip package, the maximum junction temperature is $175^{\circ} \mathrm{C}$. If these maximums are exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.


## Maximum Power Dissipation vs. Temperature

While the AD 810 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature is not exceeded under all conditions.


Offset Null Configuration

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

## Plastic Mini-DIP (N) Package



Cerdip (Q) Package


All brand or product names mentioned are trademarks or registered trademarks of their respective holders.


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

