4-Bit Full Adder The MC14008B 4-bit full adder is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. This device consists of four full adders with fast internal look-ahead carry output. It is useful in binary addition and other arithmetic applications. The fast parallel carry output bit allows high-speed operation when used with other adders in a system. #### **Features** - Look–Ahead Carry Output - Diode Protection on All Inputs - All Outputs Buffered - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4008B - Pb–Free Packages are Available* ## $\textbf{MAXIMUM RATINGS} \ (\text{Voltages Referenced to V}_{SS})$ | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ON Semiconductor® **MARKING DIAGRAMS** PDIP-16 **P SUFFIX CASE 648** SOIC-16 **D SUFFIX CASE 751B** = Assembly Location WL. L = Wafer Lot YY, Y = Year = Work Week WW, W = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. **PIN ASSIGNMENT** | A4 [| 1 ● | 16 |] V _{DD} | |-------------------|-----|----|-------------------| | В3 [| 2 | 15 |] B4 | | A3 [| 3 | 14 | C _{out} | | B2 [| 4 | 13 |] S4 | | A2 [| 5 | 12 |] S3 | | B1 [| 6 | 11 |] S2 | | A1 [| 7 | 10 |] S1 | | v _{ss} [| 8 | 9 | C _{in} | | | | | | TRUTH TABLE (One Stage) | C _{in} | В | Α | C _{out} | S | |-----------------|---|---|------------------|---| | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | 1 | | 1 | 0 | 1 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 1 | ### **BLOCK DIAGRAM** ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|----------------------|--------------------------| | MC14015BCP | PDIP-16 | 500 Units / Rail | | MC14015BCPG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC14015BDR2 | SOIC-16 | 2500 Units / Tape & Reel | | MC14015BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | Characteristic | | | ., | - 55°C | | 25°C | | | 125°C | | | |---|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|---|----------------------|-----------------------------------|----------------------|------| | | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | _
_
_ | 0.05
0.05
0.05 | _
_
_ | 0
0
0 | 0.05
0.05
0.05 | _
_
_ | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0 \text{ or } V_{DD}$ | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | _
_
_ | 4.95
9.95
14.95 | 5.0
10
15 | | 4.95
9.95
14.95 | _
_
_ | Vdc | | Input Voltage
(V _O = 4.5 or 0.5 Vdc)
(V _O = 9.0 or 1.0 Vdc)
(V _O = 13.5 or 1.5 Vdc) | "0" Level | V _{IL} | 5.0
10
15 | | 1.5
3.0
4.0 | | 2.25
4.50
6.75 | 1.5
3.0
4.0 | | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | _
_
_ | 3.5
7.0
11 | 2.75
5.50
8.25 | | 3.5
7.0
11 | _
_
_ | Vdc | | Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$ | Source | I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | 1111 | - 1.7
- 0.36
- 0.9
- 2.4 | | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | _
_
_ | 0.51
1.3
3.4 | 0.88
2.25
8.8 | _
_
_ | 0.36
0.9
2.4 | _
_
_ | mAdc | | Input Current | | I _{in} | 15 | _ | ± 0.1 | _ | ±0.00001 | ± 0.1 | _ | ± 1.0 | μAdc | | Input Capacitance
(V _{in} = 0) | | C _{in} | _ | _ | _ | _ | 5.0 | 7.5 | _ | _ | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | _
_
_ | 5.0
10
20 | _
_
_ | 0.005
0.010
0.015 | 5.0
10
20 | _
_
_ | 150
300
600 | μAdc | | Total Supply Current (Not
(Dynamic plus Quieso
Per Package)
(C _L = 50 pF on all out
buffers switching) | ent, | I _T | 5.0
10
15 | | | $I_T = (3)$ | 1.7 μΑ/kHz) f
3.4 μΑ/kHz) f
5.0 μΑ/kHz) f | + I _{DD} | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.005. ## SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$) | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | |--|-------------------------------------|------------------------|-----|-----------------|-----|------| | Output Rise and Fall Time | t _{TLH} , | | | | | ns | | t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ | t _{THL} | 5.0 | _ | 100 | 200 | | | t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ | | 10 | _ | 50 | 100 | | | t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$ | | 15 | _ | 40 | 80 | | | Propagation Delay Time | t _{PLH} , t _{PHL} | | | | | ns | | Sum in to Sum Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ | | 5.0 | _ | 400 | 800 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 127 \text{ ns}$ | | 10 | _ | 160 | 320 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 15 | _ | 115 | 230 | | | Sum In to Carry Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 220 \text{ ns}$ | | 5.0 | _ | 305 | 610 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 112 \text{ ns}$ | | 10 | _ | 145 | 290 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 85 \text{ ns}$ | | 15 | _ | 110 | 220 | | | Carry In to Sum Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 290 \text{ ns}$ | | 5.0 | _ | 375 | 750 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 122 \text{ ns}$ | | 10 | _ | 155 | 310 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 15 | _ | 115 | 230 | | | Carry In to Carry Out | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 85 \text{ ns}$ | | 5.0 | - | 170 | 340 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 42 \text{ ns}$ | | 10 | _ | 75 | 150 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 30 \text{ ns}$ | | 15 | _ | 55 | 110 | | - 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. **Figure 1. Typical Source Current** Characteristics Test Circuit Figure 2. Typical Sink Current **Characteristics Test Circuit** ## **PACKAGE DIMENSIONS** PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE T - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | | |-----|---------|-----------|----------|--------|--| | DIM | MIN MAX | | MIN | MAX | | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | | В | 0.250 | 0.270 | 6.35 | 6.85 | | | С | 0.145 | 0.175 | 3.69 | 4.44 | | | D | 0.015 | 0.021 | 0.39 | 0.53 | | | F | 0.040 | 0.70 | 1.02 | 1.77 | | | G | 0.100 | BSC | 2.54 BSC | | | | Н | 0.050 | 0.050 BSC | | BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.130 | 2.80 | 3.30 | | | L | 0.295 | 0.305 | 7.50 | 7.74 | | | M | 0° | 10 ° | 0° | 10 ° | | | S | 0.020 | 0.040 | 0.51 | 1.01 | |