FEATURES

High speed and fast settling on 5 V
$110 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathrm{G}=+1$) (AD8051/AD8052)
$150 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathrm{G}=+1$) (AD8054)
145 V/ $\mu \mathrm{s}$ slew rate
50 ns settling time to 0.1\%
Single-supply operation
Output swings to within 25 mV of either rail
Input voltage range: $\mathbf{- 0 . 2} \mathbf{V}$ to $+4 \mathrm{~V} ; \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$
Video specifications ($\mathbf{G}=+\mathbf{2}$)
0.1 dB gain flatness: 20 MHz ; $\mathrm{R}_{\mathrm{L}}=150 \Omega$

Differential gain/phase: $0.03 \% / 0.03^{\circ}$
Low distortion
-80 dBc total harmonic @ $1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
Outstanding load drive capability
Drives $45 \mathrm{~mA}, 0.5 \mathrm{~V}$ from supply rails (AD8051/AD8052)
Drives 50 pF capacitive load (G = +1) (AD8051/AD8052)
Low power: $\mathbf{2 . 7 5 \mathrm { mA } / a m p l i f i e r ~ (A D 8 0 5 4) ~}$
Low power: 4.4 mA/amplifier (AD8051/AD8052)

APPLICATIONS

Active filters

Analog-to-digital drivers
Clock buffer
Consumer video
Professional cameras
CCD imaging systems
CD/DVD ROMs

PIN CONNECTIONS (TOP VIEWS)

Figure 1. SOIC-8 (R)

Figure 3. SOIC (R-8) and MSOP (RM-8)

Figure 2. SOT-23-5 (RJ)

Figure 4. SOIC (R-14) and TSSOP (RU-14)

Figure 5. Low Distortion Rail-to-Rail Output Swing

The AD8051/AD8052/AD8054 are well suited for video electronics, cameras, video switchers, or any high speed portable equipment. Low distortion and fast settling make them ideal for active filter applications.

The AD8051/AD8052 in the 8-lead SOIC, the AD8052 in the MSOP, the AD8054 in the 14-lead SOIC, and the 14-lead TSSOP packages are available in the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

SPECIFICATIONS

@ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V , unless otherwise noted.
Table 1.

Parameter	Conditions	AD8051A/AD8052A			AD8054A			Unit
		Min	Typ	Max	Min	Typ	Max	
DYNAMIC PERFORMANCE	$\mathrm{G}=+1, \mathrm{~V}_{\text {Out }}=0.2 \mathrm{~V}$ p-p	70	110					
-3 dB Small Signal Bandwidth					80	150		MHz
	$\mathrm{G}=-1,+2, \mathrm{~V}_{\text {Out }}=0.2 \mathrm{~V}$ p-p		50			60		MHz
Bandwidth for 0.1 dB Flatness	$\begin{aligned} & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p, } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$							
	$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=806 \Omega(\mathrm{AD} 8051 \mathrm{~A} / \\ & \mathrm{AD} 8052 \mathrm{~A}) \end{aligned}$		20					MHz
	$\mathrm{R}_{\mathrm{F}}=200 \Omega$ (AD8054A)					12		MHz
Slew Rate	$\mathrm{G}=-1, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ step	100	145		140	170		V/ $/ \mathrm{s}$
Full Power Response	$\mathrm{G}=+1, \mathrm{~V}$ out $=2 \mathrm{~V}$ p-p		35			45		MHz
Settling Time to 0.1\%	$\mathrm{G}=-1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ step		50			40		ns
NOISE/DISTORTION PERFORMANCE								
Total Harmonic Distortion ${ }^{1}$	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \\ & \mathrm{G}=+2 \end{aligned}$		-67			-68		dB
Input Voltage Noise	$\mathrm{f}=10 \mathrm{kHz}$		16			16		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=10 \mathrm{kHz}$		850			850		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
Differential Gain Error (NTSC)	$\mathrm{G}=+2, \mathrm{RL}=150 \Omega$ to 2.5 V		0.09			0.07		
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 2.5 V		0.03			0.02		
Differential Phase Error (NTSC)	$\mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 2.5 V		0.19			0.26		Degrees
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 2.5 V		0.03			0.05		Degrees
Crosstalk	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2$		-60			-60		dB
DC PERFORMANCE								
Input Offset Voltage			1.7	10		1.7	12	mV
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {Max }}$			25			30	
Offset Drift			10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current			1.4	2.5		2	4.5	
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$			3.25			4.5	
Input Offset Current			0.1	0.75		0.2	1.2	$\mu \mathrm{A}$
Open-Loop Gain	$\mathrm{RL}=2 \mathrm{k} \Omega$ to 2.5 V	86	98		82	98		dB
	$\mathrm{T}_{\text {min }}-\mathrm{T}_{\text {MAX }}$		96			96		dB
	$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to 2.5 V	76	82		74	82		dB
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$		78			78		dB
INPUT CHARACTERISTICS								
Input Resistance			290			300		$k \Omega$
Input Capacitance			1.4			1.5		pF
Input Common-Mode Voltage Range			$\begin{aligned} & -0.2 \text { to } \\ & +4 \end{aligned}$			$\begin{aligned} & -0.2 \text { to } \\ & +4 \end{aligned}$		V
Common-Mode Rejection Ratio	$\mathrm{V}_{C M}=0 \mathrm{~V}$ to 3.5 V	72	88		70	86		dB

AD8051/AD8052/AD8054

Parameter	Conditions	AD8051A/AD8052A			AD8054A			Unit
		Min	Typ	Max	Min	Typ	Max	
OUTPUT CHARACTERISTICS								
Output Voltage Swing	$\mathrm{RL}=10 \mathrm{k} \Omega$ to 2.5 V		$0.015 \text { to }$ 4.985			$\begin{aligned} & 0.03 \text { to } \\ & 4.975 \end{aligned}$		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	$\begin{aligned} & 0.1 \text { to } \\ & 4.9 \end{aligned}$	$\begin{aligned} & 0.025 \text { to } \\ & 4.975 \end{aligned}$		$\begin{aligned} & 0.125 \text { to } \\ & 4.875 \end{aligned}$	$\begin{aligned} & 0.05 \text { to } \\ & 4.95 \end{aligned}$		V
	$\mathrm{R} \mathrm{L}=150 \Omega$ to 2.5 V	$\begin{aligned} & 0.3 \text { to } \\ & 4.625 \end{aligned}$	$\begin{aligned} & 0.2 \text { to } \\ & 4.8 \end{aligned}$		$\begin{aligned} & 0.55 \text { to } \\ & 4.4 \end{aligned}$	$\begin{aligned} & 0.25 \text { to } \\ & 4.65 \end{aligned}$		V
Output Current	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V}$ to 4.5 V		45			30		mA
	$\mathrm{T}_{\text {min }}$ - $\mathrm{T}_{\text {max }}$		45			30		mA
Short-Circuit Current	Sourcing		80			45		mA
	Sinking		130			85		mA
Capacitive Load Drive	$\begin{aligned} & \mathrm{G}=+1 \text { (AD8051/AD8052) } \\ & \mathrm{G}=+2 \text { (AD8054) } \end{aligned}$		50			40		pF pF
POWER SUPPLY								
Operating Range		3		12	3		12	V
Quiescent Current/Amplifier			4.4	5		2.75	3.275	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{s}}= \pm 1 \mathrm{~V}$	70	80		68	80		dB
OPERATING TEMPERATURE RANGE	RJ-5	-40		+85				${ }^{\circ} \mathrm{C}$
	RM-8, R-8, RU-14, R-14	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Refer to Figure 19.
@ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.5 V , unless otherwise noted.
Table 2.

Parameter	Conditions	AD8051A/AD8052A			AD8054A			Unit
		Min	Typ	Max	Min	Typ	Max	
DYNAMIC PERFORMANCE								
-3 dB Small Signal Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V}$ p-p	70	110		80	135		MHz
	$\begin{aligned} & \mathrm{G}=-1,+2, \mathrm{~V}_{\text {OUT }}= \\ & 0.2 \mathrm{Vp}-\mathrm{p} \end{aligned}$		50			65		MHz
Bandwidth for 0.1 dB Flatness	$\begin{aligned} & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$							
	$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=402 \Omega(\mathrm{AD} 8051 \mathrm{~A} / \\ & \mathrm{AD} 8052 \mathrm{~A}) \end{aligned}$		17					MHz
	$\mathrm{R}_{\mathrm{F}}=200 \Omega$ (AD8054A)					10		MHz
Slew Rate	$\mathrm{G}=-1, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ step	90	135		110	150		V/ $/ \mathrm{s}$
Full Power Response	$\mathrm{G}=+1, \mathrm{~V}_{\text {out }}=1 \mathrm{~V} \mathrm{p}-\mathrm{p}$		65			85		MHz
Settling Time to 0.1\%	$\mathrm{G}=-1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ step		55			55		ns
NOISE/DISTORTION PERFORMANCE								
Total Harmonic Distortion ${ }^{1}$	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp-p}, \\ & \mathrm{G}=-1, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } 1.5 \mathrm{~V} \end{aligned}$		-47			-48		dB
Input Voltage Noise	$\mathrm{f}=10 \mathrm{kHz}$		16			16		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=10 \mathrm{kHz}$		600			600		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
Differential Gain Error (NTSC)	$\mathrm{G}=+2, \mathrm{~V}_{\mathrm{cm}}=1 \mathrm{~V}$							
	$\mathrm{R} L=150 \Omega$ to 1.5 V		0.11			0.13		
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 1.5 V		0.09			0.09		\%
Differential Phase Error (NTSC)	$\mathrm{G}=+2, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V}$							
	$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to 1.5 V		0.24			0.3		Degrees
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 1.5 V		0.10			0.1		Degrees
Crosstalk	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2$		-60			-60		dB
DC PERFORMANCE								
Input Offset Voltage			1.6	10		1.6	12	mV
	$\mathrm{T}_{\text {min }}$ - $\mathrm{Tmax}^{\text {max }}$			25			30	mV
Offset Drift						15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current			1.3	2.6		2	4.5	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$			3.25			4.5	$\mu \mathrm{A}$
Input Offset Current			0.15	0.8		0.2	1.2	$\mu \mathrm{A}$
Open-Loop Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	80	96		80	96		dB
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$		94			94		dB
	$\mathrm{RL}=150 \Omega$	74	82		72	80		dB
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$		76			76		dB
INPUT CHARACTERISTICS								
Input Resistance			290			300		$k \Omega$
Input Capacitance			1.4			1.5		pF
Input Common-Mode Voltage Range			$\begin{aligned} & -0.2 \text { to } \\ & +2 \end{aligned}$			$\begin{aligned} & -0.2 \text { to } \\ & +2 \end{aligned}$		V
Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 1.5 V	72	88		70	86		dB

AD8051/AD8052/AD8054

Parameter	Conditions	AD8051A/AD8052A			AD8054A			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage Swing	$\mathrm{RL}=10 \mathrm{k} \Omega$ to 1.5 V		$\begin{aligned} & 0.01 \text { to } \\ & 2.99 \end{aligned}$			$\begin{aligned} & 0.025 \text { to } \\ & 2.98 \end{aligned}$		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.5 V	$\begin{aligned} & 0.0 .75 \text { to } \\ & 2.9 \end{aligned}$	$\begin{aligned} & 0.02 \text { to } \\ & 2.98 \end{aligned}$		$\begin{aligned} & 0.1 \text { to } \\ & 2.9 \end{aligned}$	$\begin{aligned} & 0.35 \text { to } \\ & 2.965 \end{aligned}$		V
	$\mathrm{RL}=150 \Omega$ to 1.5 V	$\begin{aligned} & 0.2 \text { to } \\ & 2.75 \end{aligned}$	$\begin{aligned} & 0.125 \text { to } \\ & 2.875 \end{aligned}$		$\begin{aligned} & 0.35 \text { to } \\ & 2.55 \end{aligned}$	$\begin{aligned} & 0.15 \text { to } \\ & 2.75 \end{aligned}$		V
Output Current	$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 2.5 V		45			25		mA
	$\mathrm{T}_{\text {min }}$ - $\mathrm{T}_{\text {max }}$		45			25		mA
Short-Circuit Current	Sourcing		60			30		mA
	Sinking		90			50		mA
Capacitive Load Drive	$\begin{aligned} & \mathrm{G}=+1 \text { (AD8051/AD8052) } \\ & \mathrm{G}=+2 \text { (AD8054) } \end{aligned}$		45			35		pF pF
POWER SUPPLY								
Operating Range		3		12	3		12	V
Quiescent Current/Amplifier			4.2	4.8		2.625	3.125	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{s}}=0.5 \mathrm{~V}$	68	80		68	80		dB
OPERATING TEMPERATURE RANGE	RJ-5	-40		+85				${ }^{\circ} \mathrm{C}$
	RM-8, R-8, RU-14, R-14				-40		+125	

${ }^{1}$ Refer to Figure 19.
@ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground, unless otherwise noted.
Table 3.

AD8051/AD8052/AD8054

Parameter	Conditions	AD8051A/AD8052A			AD8054A			Unit
		Min	Typ	Max	Min	Typ	Max	
POWER SUPPLY								
Operating Range		3		12	3		12	V
Quiescent Current/Amplifier			4.8	5.5		2.875	3.4	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{s}}= \pm 1$	68	80		68	80		dB
OPERATING TEMPERATURE RANGE	RJ-5	-40		+85				${ }^{\circ} \mathrm{C}$
	RM-8, R-8, RU-14, R-14	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Ratings
Supply Voltage	12.6 V
Internal Power Dissipation ${ }^{1}$	Observe power derating curves
SOIC Packages	Observe power derating curves Observe power der-23 Package
MSOP Package	Observe power
derating curves	
TSSOP Package	$\pm V_{\mathrm{s}}$
Input Voltage (Common Mode)	$\pm 2.5 \mathrm{~V}$
Differential Input Voltage	Observe power
Output Short-Circuit Duration	derating curves
Storage Temperature Range (R)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (A Grade)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec$)$	$300^{\circ} \mathrm{C}$

${ }^{1}$ See Table 5.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE
Specification is for device in free air.
Table 5. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
8-Lead SOIC	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
5-Lead SOT-23	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead MSOP	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead SOIC	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead TSSOP	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8051/AD8052/AD8054 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately $150^{\circ} \mathrm{C}$. Temporarily exceeding this limit can cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in device failure.

While the AD8051/AD8052/AD8054 are internally shortcircuit protected, this cannot be sufficient to guarantee that the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.

Figure 6. Maximum Power Dissipation vs. Temperature for AD8051/AD8052/AD8054

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8051/AD8052/AD8054

Figure 55. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 56. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

Figure 57. 14-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-14$)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8051AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8051AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8051AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8051ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8051ARZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8051ARZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8051ART-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 7 " Tape and Reel	RJ-5	H2A
AD8051ART-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 13" Tape and Reel	RJ-5	H2A
AD8051ART-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 7 " Tape and Reel	RJ-5	H2A
AD8051ARTZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 7" Tape and Reel	RJ-5	H06
AD8051ARTZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 13" Tape and Reel	RJ-5	H06
AD8051ARTZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5-Lead SOT-23, 7" Tape and Reel	RJ-5	H06
AD8052AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8052AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8052AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8052ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8052ARZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8052ARZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8052ARM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	H4A
AD8052ARM-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 13" Tape and Reel	RM-8	H4A
AD8052ARM-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 7" Tape and Reel	RM-8	H4A
AD8052ARMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	H4A\#
AD8052ARMZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 7" Tape and Reel	RM-8	H4A\#
AD8054AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N	R-14	
AD8054AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N, 13" Tape and Reel	R-14	
AD8054AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N, 7" Tape and Reel	R-14	
AD8054ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N	R-14	
AD8054ARZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N, 13" Tape and Reel	R-14	
AD8054ARZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead SOIC_N, 7" Tape and Reel	R-14	
AD8054ARU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP	RU-14	
AD8054ARU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP, 13" Tape and Reel	RU-14	
AD8054ARU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP, 7" Tape and Reel	RU-14	
AD8054ARUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP	RU-14	
AD8054ARUZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP, 13" Tape and Reel	RU-14	
AD8054ARUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP, 7" Tape and Reel	RU-14	

[^0]
[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part. \# denotes lead-free product may be top or bottom marked.

