

2.7 V, 800 µA, 80 MHz Rail-to-Rail I/O Amplifiers AD8031/AD8032

FEATURES

Low power Supply current 800 µA/amplifier Fully specified at +2.7 V, +5 V, and ±5 V supplies High speed and fast settling on 5 V 80 MHz, -3 dB bandwidth (G = +1) 30 V/µs slew rate 125 ns settling time to 0.1% Rail-to-rail input and output No phase reversal with input 0.5 V beyond supplies Input CMVR extends beyond rails by 200 mV Output swing to within 20 mV of either rail Low distortion -62 dB @ 1 MHz, Vo = 2 V p-p -86 dB @ 100 kHz, Vo = 4.6 V p-p Output current: 15 mA

APPLICATIONS

High speed, battery-operated systems High component density systems Portable test instruments A/D buffers Active filters High speed, set-and-demand amplifiers

High grade option: Vos (maximum) = 1.5 mV

GENERAL DESCRIPTION

The AD8031 (single) and AD8032 (dual) single-supply, voltage feedback amplifiers feature high speed performance with 80 MHz of small signal bandwidth, 30 V/µs slew rate, and 125 ns settling time. This performance is possible while consuming less than 4.0 mW of power from a single 5 V supply. These features increase the operation time of high speed, battery-powered systems without compromising dynamic performance.

The products have true single-supply capability with rail-to-rail input and output characteristics and are specified for +2.7 V, +5 V, and ± 5 V supplies. The input voltage range can extend to 500 mV beyond each rail. The output voltage swings to within 20 mV of each rail providing the maximum output dynamic range.

The AD8031/AD8032 also offer excellent signal quality for only 800 μ A of supply current per amplifier; THD is -62 dBc with a 2 V p-p, 1 MHz output signal, and -86 dBc for a 100 kHz, 4.6 V p-p signal on +5 V supply. The low distortion and fast settling time make them ideal as buffers to single-supply ADCs.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAMS

Figure 3. 5-Lead SOT-23 (RJ-5)

Operating on supplies from +2.7 V to +12 V and dual supplies up to ± 6 V, the AD8031/AD8032 are ideal for a wide range of applications, from battery-operated systems with large bandwidth requirements to high speed systems where component density requires lower power dissipation. The AD8031/AD8032 are available in 8-lead PDIP and 8-lead SOIC_N packages and operate over the industrial temperature range of -40°C to +85°C. The AD8031A is also available in the space-saving 5-lead SOT-23 package, and the AD8032A is available in an 8-lead MSOP package.

Figure 6. Rail-to-Rail Performance at 100 kHz

SPECIFICATIONS

+2.7 V SUPPLY

@ T_{A} = 25°C, V_{S} = 2.7 V, R_{L} = 1 k Ω to 1.35 V, R_{F} = 2.5 k Ω , unless otherwise noted.

Table 1.

ParameterConditionsMinTypMaxMinTypMaxUnitDYNAMIC PERFORMANCE $-3 dB Small Signal Bandwidth$ $G = +1, V_0 < 0.4 V p-p$ 54 80 54 80 MHzSlew Rate $G = -1, V_0 = 2V$ step 25 30 25 30 $V/\mu s$ Settling Time to 0.1% $G = -1 V_0 = 2V$ step $C_1 = 10 pE$ 125 125 125	
DYNAMIC PERFORMANCE $G = +1, V_0 < 0.4 V p-p$ 54 80 54 80 MHz -3 dB Small Signal Bandwidth $G = +1, V_0 < 0.4 V p-p$ 54 80 54 80 MHz Slew Rate $G = -1, V_0 = 2V$ step 25 30 25 30 V/µs Settling Time to 0.1% $G = -1, V_0 = 2V$ step $C_1 = 10 pE$ 125 125 125	x Unit
-3 dB Small Signal Bandwidth $G = +1, V_0 < 0.4 V p-p$ 5480MHzSlew Rate $G = -1, V_0 = 2 V$ step25302530 $V/\mu s$ Settling Time to 0.1% $G = -1, V_0 = 2V$ step $C_1 = 10 pE$ 125125125	
Slew Rate $G = -1, V_0 = 2 V$ step 25 30 25 30 $V/\mu s$ Settling Time to 0.1% $G = -1, V_0 = 2 V$ step $C = 10 \text{ pc}$ 125 125 125 125	MHz
Settling Time to 0.1% $G = -1.V_0 = 2V$ step $G = 10 \text{ pc}$ 125 125	V/µs
	ns
DISTORTION/NOISE PERFORMANCE	
Total Harmonic Distortion $f_c = 1 \text{ MHz}, V_0 = 2 \text{ V p-p}, G = +2$ -62 -62 dBc	dBc
$f_{C} = 100 \text{ kHz}, V_{O} = 2 \text{ V p-p}, G = +2 -86 -86 \text{ dBc}$	dBc
Input Voltage Noise $f = 1 \text{ kHz}$ 15 15 nV/\sqrt{H}	nV/√Hz
Input Current Noise $f = 100 \text{ kHz}$ 2.4 2.4 pA/\sqrt{H}	pA/√Hz
f=1 kHz 5 5 pA/√H	pA/√Hz
Crosstalk (AD8032 Only) f = 5 MHz -60 -60 dB	dB
DC PERFORMANCE	
Input Offset Voltage V _{CM} = V _{CC} /2; V _{OUT} = 135 V ±1 ±6 ±0.5 ±1.5 mV	.5 mV
T_MIN to T_MAX ±6 ±10 ±1.6 ±2.5 mV	.5 mV
Offset Drift V _{CM} = V _{CC} /2; V _{OUT} = 135 V 10 10 μV/°C	μV/°C
Input Bias Current V _{CM} = V _{CC} /2; V _{OUT} = 135 V 0.45 2 0.45 2 μA	μΑ
T _{MIN} to T _{MAX} 2.2 2.2 μA	μΑ
Input Offset Current 50 500 500 nA) nA
Open-Loop Gain V _{CM} = V _{CC} /2; V _{OUT} = 0.35 V to 2.35 V 76 80 76 80 dB	dB
T _{MIN} to T _{MAX} 74 dB	dB
INPUT CHARACTERISTICS	
Common-Mode Input Resistance 40 40 ΜΩ	MΩ
Differential Input Resistance 280 280 kΩ	kΩ
Input Capacitance 1.6 1.6 pF	pF
Input Voltage Range –0.5 to –0.5 to V	V
+3.2 +3.2	
Input Common-Mode Voltage Range –0.2 to –0.2 to V	V
+2.9 +2.9 Common Mode Dejection Datio V 0V/to 2.7V 4C C4 dD	٩b
Common-wide Rejection Ratio $V_{CM} = 0 V to 2.7 V$ 46 64 46 64 46 46 46 46 46 46 46	dB
$V_{CM} = 0 V (0 1.55 V) \qquad 58 74 \qquad 0B$	dB V
	v
	V
Output Voltage Swing Low $h_L = 10 \text{ kg}$ $0.05 0.02 0.05 0.02 V$	V
Output Voltage Swing Fight $P_{\rm e} = 1 k \Omega$ $0.15 - 0.08 V$	v
Output Voltage Swing Low $h_L = 1 K \Sigma$ 0.15 0.06 0.15 0.08 V	V
	V m A
Short Circuit Current Sourcing 21 21 mA	mA
Short Circuit Current Sourcing 21 21 InA	mA
$G_{2} = -54 \qquad -54 \qquad \text{IIA}$	niA nE
Capacitive Load Drive G = +2 (see Figure 46) = 13 = 15 = 15 = 15	рг
Operating Pango 27 12 27 12 V	V
Operating nange 2.7 12 2.7 12 V Outgescent Current nor Amplifier 750 1250 750 1250 V	
$\frac{1}{20} = \frac{1}{20} $	
$V_{s} = -0.00 - 1.00 $	uD

AD8031/AD8032

+5 V SUPPLY

@ T_{A} = 25°C, V_{S} = 5 V, R_{L} = 1 k Ω to 2.5 V, R_{F} = 2.5 k Ω , unless otherwise noted.

Table 2.

		AD8031A/AD8032A		AD8	AD8031B/AD8032B			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE								
–3 dB Small Signal Bandwidth	$G = +1, V_0 < 0.4 V p-p$	54	80		54	80		MHz
Slew Rate	$G = -1$, $V_0 = 2 V$ step	27	32		27	32		V/µs
Settling Time to 0.1%	$G = -1, V_0 = 2 V$ step, $C_L = 10 \text{ pF}$		125			125		ns
DISTORTION/NOISE PERFORMANCE								
Total Harmonic Distortion	$f_c = 1 \text{ MHz}, V_o = 2 \text{ V p-p}, G = +2$		-62			-62		dBc
	$f_{C} = 100 \text{ kHz}, V_{O} = 2 \text{ V p-p}, G = +2$		-86			-86		dBc
Input Voltage Noise	f = 1 kHz		15			15		nV/√Hz
Input Current Noise	f = 100 kHz		2.4			2.4		pA/√Hz
	f = 1 kHz		5			5		pA/√Hz
Differential Gain	$R_L = 1 \ k\Omega$		0.17			0.17		%
Differential Phase	$R_L = 1 \ k\Omega$		0.11			0.11		Degrees
Crosstalk (AD8032 Only)	f = 5 MHz		-60			-60		dB
DC PERFORMANCE								
Input Offset Voltage	$V_{CM} = V_{CC}/2; V_{OUT} = 2.5 V$		±1	±б		±0.5	±1.5	mV
	T _{MIN} to T _{MAX}		±б	±10		±1.6	±2.5	mV
Offset Drift	$V_{CM} = V_{CC}/2; V_{OUT} = 2.5 V$		5			5		µV/°C
Input Bias Current	$V_{CM} = V_{CC}/2; V_{OUT} = 2.5 V$		0.45	1.2		0.45	1.2	μΑ
	T _{MIN} to T _{MAX}			2.0			2.0	μΑ
Input Offset Current			50	350		50	250	nA
Open-Loop Gain	$V_{CM} = V_{CC}/2$; $V_{OUT} = 1.5$ V to 3.5 V	76	82		76	82		dB
	T _{MIN} to T _{MAX}	74			74			dB
INPUT CHARACTERISTICS								
Common-Mode Input Resistance			40			40		MΩ
Differential Input Resistance			280			280		kΩ
Input Capacitance			1.6			1.6		pF
Input Voltage Range			–0.5 to			–0.5 to		V
			+5.5			+5.5		
Input Common-Mode Voltage Range			-0.2 to			-0.2 to		V
Common Made Dais stien Datie		56	+5.2		54	+5.2		-10
Common-Mode Rejection Ratio	$V_{CM} = 0$ V to 5 V	56	70		56	70		an
	$V_{CM} = 0 V$ to 3.8 V	66	80	2.4	66	80	2.4	aB
				3.4			3.4	V
		0.05	0.00		0.05	0.02		N/
Output Voltage Swing Low	$R_L = 10 \text{ K}\Omega$	0.05	0.02		0.05	0.02		V
Output voltage Swing High	D 140	4.95	4.98		4.95	4.98		V
Output Voltage Swing Low	$R_L = 1 K\Omega$	0.2	0.1		0.2	0.1		V
Output voltage Swing High		4.8	4.9		4.8	4.9		V
Output Current	Councing		15			15		mA
Short Circuit Current	Sourcing		28			28		mA
Consistive Load Drive			-40 15			-40 1 F		mA nE
	G – +2 (See Figure 46)		15			15		рг
Operating Paper		27		10	2 7		12	V
Oujoccopt Current per Amplifier		2./	800	1400	2./	800	1400	v u A
Quiescent Current per Ampliner	$V_{} = 0 V(t_0 - 1) V_{0} c_1$	75	000 86	1400	75	000 86	1400	μA dB
	$V_{s} = -6 V t_{0} = 1 V 0 V$ $V_{s} = +5 V t_{0} + 6 V$	10	00		15	00		UD

±5 V SUPPLY

@ $T_{\rm A}$ = 25°C, $V_{\rm S}$ = ±5 V, $R_{\rm L}$ = 1 k Ω to 0 V, $R_{\rm F}$ = 2.5 k Ω , unless otherwise noted.

Table 3.

		AD80	AD8031A/AD8032A		AD8031B/AD8032B			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE								
–3 dB Small Signal Bandwidth	$G = +1, V_0 < 0.4 V p-p$	54	80		54	80		MHz
Slew Rate	$G = -1$, $V_0 = 2 V$ step	30	35		30	35		V/µs
Settling Time to 0.1%	$G = -1$, $V_0 = 2$ V step, $C_L = 10$ pF		125			125		ns
DISTORTION/NOISE PERFORMANCE								
Total Harmonic Distortion	ic Distortion $f_c = 1 \text{ MHz}, V_0 = 2 \text{ V p-p}, G = +2 -62 -62$		-62		dBc			
	$f_{C} = 100 \text{ kHz}, V_{O} = 2 \text{ V p-p}, G = +2$		-86			-86		dBc
Input Voltage Noise	f = 1 kHz		15			15		nV/√Hz
Input Current Noise	f = 100 kHz		2.4			2.4		pA/√Hz
	f = 1 kHz		5			5		pA/√Hz
Differential Gain	$R_L = 1 \ k\Omega$		0.15			0.15		%
Differential Phase	$R_L = 1 \ k\Omega$		0.15			0.15		Degrees
Crosstalk (AD8032 Only)	f = 5 MHz		-60			-60		dB
DC PERFORMANCE								
Input Offset Voltage	$V_{CM} = 0 V; V_{OUT} = 0 V$		±1	±б		±0.5	±1.5	mV
	T _{MIN} to T _{MAX}		±6	±10		±1.6	±2.5	mV
Offset Drift	$V_{CM} = 0 V; V_{OUT} = 0 V$		5			5		μV/°C
Input Bias Current	$V_{CM} = 0 V; V_{OUT} = 0 V$		0.45	1.2		0.45	1.2	μΑ
	T _{MIN} to T _{MAX}			2.0			2.0	μΑ
Input Offset Current			50	350		50	250	nA
Open-Loop Gain	$V_{CM} = 0 V; V_{OUT} = \pm 2 V$	76	80		76	80		dB
	T _{MIN} to T _{MAX}	74			74			dB
INPUT CHARACTERISTICS								
Common-Mode Input Resistance			40			40		MΩ
Differential Input Resistance			280			280		kΩ
Input Capacitance			1.6			1.6		pF
Input Voltage Range			-5.5 to			-5.5 to		V
			+5.5			+5.5		
Input Common-Mode Voltage Range			-5.2 to			-5.2 to		V
Common Mode Paiastion Patio	V = 5V(to + 5V)	60	+5.2 00		60	+5.2 00		ЧÞ
Common-Mode Rejection Ratio	$V_{CM} = -5V(0+5V)$	66	00		66	00		dD
Differential/Input Voltage	$V_{CM} = -3 V (0 + 3.5 V)$	00	90	3 1	00	90	3.4	UD V
				5.4			J. 4	v
Output Voltage Swing Low	$P_{\rm c} = 10 k \Omega$	_1 04	_1 08		_1 01	_1 08		V
Output Voltage Swing Low	$R_L = 10 \text{ K}_2$	-4.94	-4.90		-4.94 ±4.04	-4.90		v
Output Voltage Swing Low	$B_{\rm r} = 1 \mathrm{kO}$	-47	-1 85		++.9+ _/1 7	-1 85		v
Output Voltage Swing Low	NL = T K Z	-4.7 ±4.7	-4.05 ⊥4.75		-4.7 ⊥4.7	-4.05 ±4.75		v
Output Current		1 4.7	15		1 7.7	15		mΑ
Short Circuit Current	Sourcing		35			35		mΔ
Short circuit current	Sinking		_50			_50		mΔ
Capacitive Load Drive	$G = \pm 2$ (See Figure 46)		15			15		nF
			15			15		
Operating Range		+1 35		+6	+1.35		+6	V
Quiescent Current per Amplifier			900	_~ 1600	_1.55	900	_~ 1600	μA
Power Supply Rejection Ratio	$V_{s} = -5 V \text{ to } -6 V \text{ or}$	76	86		76	86		dB
	V_{s} + = +5 V to +6 V	-			-			

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	12.6 V
Internal Power Dissipation ¹	
8-Lead PDIP (N)	1.3 W
8-Lead SOIC_N (R)	0.8 W
8-Lead MSOP (RM)	0.6 W
5-Lead SOT-23 (RJ)	0.5 W
Input Voltage (Common Mode)	$\pm V_{s} \pm 0.5 V$
Differential Input Voltage	±3.4 V
Output Short-Circuit Duration	Observe Power Derating Curves
Storage Temperature Range (N, R, RM, RJ)	–65°C to +125°C
Lead Temperature (Soldering 10 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

¹ Specification is for the device in free air:

8-Lead PDIP: $\theta_{JA} = 90^{\circ}$ C/W.

8-Lead SOIC_N: $\theta_{JA} = 155^{\circ}C/W$.

8-Lead MSOP: $\theta_{JA} = 200^{\circ}C/W$.

5-Lead SOT-23: $\theta_{JA} = 240^{\circ}C/W$.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8031/AD8032 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily can cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

While the AD8031/AD8032 are internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves shown in Figure 7.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8031/AD8032

OUTLINE DIMENSIONS

Rev. D | Page 18 of 20

AD8031/AD8032

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8031AN	-40°C to +85°C	8-Lead PDIP	N-8	
AD8031ANZ ¹	–40°C to +85°C	8-Lead PDIP	N-8	
AD8031AR	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8031AR-REEL	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8031AR-REEL7	–40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8031ARZ ¹	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8031ARZ-REEL ¹	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8031ARZ-REEL71	–40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8031ART-R2	–40°C to +85°C	5-Lead SOT-23	RJ-5	HOA
AD8031ART-REEL	–40°C to +85°C	5-Lead SOT-23, 13" Tape and Reel	RJ-5	HOA
AD8031ART-REEL7	–40°C to +85°C	5-Lead SOT-23, 7" Tape and Reel	RJ-5	HOA
AD8031ARTZ-R21	–40°C to +85°C	5-Lead SOT-23	RJ-5	H04
AD8031ARTZ-REEL ¹	–40°C to +85°C	5-Lead SOT-23, 13" Tape and Reel	RJ-5	H04
AD8031ARTZ-REEL71	–40°C to +85°C	5-Lead SOT-23, 7" Tape and Reel	RJ-5	H04
AD8031BN	–40°C to +85°C	8-Lead PDIP	N-8	
AD8031BNZ ¹	–40°C to +85°C	8-Lead PDIP	N-8	
AD8031BR	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8031BR-REEL	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8031BR-REEL7	-40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8031BRZ ¹	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8031BRZ-REEL1	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8031BRZ-REEL71	–40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8032AN	-40°C to +85°C	8-Lead PDIP	N-8	
AD8032ANZ ¹	–40°C to +85°C	8-Lead PDIP	N-8	
AD8032AR	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8032AR-REEL	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8032AR-REEL7	–40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8032ARZ ¹	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8032ARZ-REEL ¹	–40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8032ARZ-REEL71	-40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8032ARM	–40°C to +85°C	8-Lead MSOP	RM-8	H9A
AD8032ARM-REEL	–40°C to +85°C	8-Lead MSOP, 13" Tape and Reel	RM-8	H9A
AD8032ARM-REEL7	–40°C to +85°C	8-Lead MSOP, 7" Tape and Reel	RM-8	H9A
AD8032ARMZ ¹	–40°C to +85°C	8-Lead MSOP	RM-8	H9A#
AD8032ARMZ-REEL ¹	–40°C to +85°C	8-Lead MSOP, 13" Tape and Reel	RM-8	H9A#
AD8032ARMZ-REEL7 ¹	–40°C to +85°C	8-Lead MSOP, 7" Tape and Reel	RM-8	H9A#
AD8032BN	–40°C to +85°C	8-Lead PDIP	N-8	
AD8032BNZ ¹	–40°C to +85°C	8-Lead PDIP	N-8	
AD8032BR	–40°C to +85°C	8-Lead SOIC_N	R-8	
AD8032BR-REEL	-40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8032BR-REEL7	-40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	
AD8032BRZ ¹	-40°C to +85°C	8-Lead SOIC_N	R-8	
AD8032BRZ-REEL ¹	-40°C to +85°C	8-Lead SOIC_N, 13" Tape and Reel	R-8	
AD8032BRZ-REEL71	-40°C to +85°C	8-Lead SOIC_N, 7" Tape and Reel	R-8	

¹ Z = RoHS Compliant Part, # denotes lead-free product may be top or bottom marked.

