Features

- Fast Read Access Time 70 ns
- 5-volt Only Reprogramming
- Sector Program Operation
 - Single Cycle Reprogram (Erase and Program)
 - 1024 Sectors (128 Bytes/Sector)
 - Internal Address and Data Latches for 128 Bytes
- . Two 8K Bytes Boot Blocks with Lockout
- Internal Program Control and Timer
- Hardware and Software Data Protection
- Fast Sector Program Cycle Time 10 ms
- DATA Polling for End of Program Detection
- Low Power Dissipation
 - 50 mA Active Current
 - 300 µA CMOS Standby Current
- Typical Endurance > 10,000 Cycles
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- Commercial and Industrial Temperature Ranges
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT29C010A is a 5-volt-only in-system Flash programmable and erasable read only memory (PEROM). Its 1 megabit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 70 ns with power dissipation of just 275 mW over the industrial temperature range. When the device is deselected, the CMOS standby current is less than 300 μA . The device endurance is such that any sector can typically be written to in excess of 10,000 times.

To allow for simple in-system reprogrammability, the AT29C010A does not require high input voltages for programming. Five-volt-only commands determine the operation of the device. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT29C010A is performed on a sector basis; 128 bytes of data are loaded into the device and then simultaneously programmed.

During a reprogram cycle, the address locations and 128 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a program cycle, the device will automatically erase the sector and then program the latched data using an internal control timer. The end of a program cycle can be detected by \overline{DATA} polling of I/O7. Once the end of a program cycle has been detected, a new access for a read or program can begin.

1-megabit (128K x 8) 5-volt Only Flash Memory

AT29C010A

0394i-FLASH-9/08

Absolute Maximum Ratings* 5.

Temperature Under Bias.....--55° C to +125° C Storage Temperature-65° C to +150° C All Input Voltages (including NC Pins) with Respect to Ground-0.6V to +6.25V All Output Voltages with Respect to Ground-0.6V to V_{CC} + 0.6V Voltage on OE with Respect to Ground-0.6V to +13.5V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

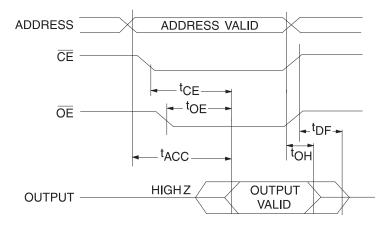
DC and AC Operating Range 6.

		AT29C010A-70	AT29C010A-90
Operating Temperature (Case)	Industrial	-40° C - 85° C	-40° C - 85° C
V _{CC} Power Supply		5V ±5%	5V ±10%

Operating Modes

Mode	CE	ŌĒ	WE	Ai	I/O
Read	V _{IL}	V _{IL}	V _{IH}	Ai	D _{OUT}
Program ⁽²⁾	V_{IL}	V _{IH}	V_{IL}	Ai	D _{IN}
5V Chip Erase	V _{IL}	V _{IH}	V _{IL}	Ai	
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	X	High Z
Program Inhibit	Х	Х	V _{IH}		
Program Inhibit	Х	V _{IL}	Х		
Output Disable	Х	V _{IH}	Х		High Z
Product Identification					
Llaudinaua	V		M	A1 - A16 = V _{IL} , A9 = V _H , (3) A0 = V _{IL}	Manufacturer Code ⁽⁴⁾
Hardware	V _{IL}	V _{IL}	V _{IH}	A1 - A16 = V _{IL} , A9 = V _H , (3) A0 = V _{IH}	Device Code ⁽⁴⁾
Cofficient (5)				A0 = V _{IL}	Manufacturer Code ⁽⁴⁾
Software ⁽⁵⁾				$A0 = V_{IH}$	Device Code ⁽⁴⁾

- Notes: 1. X can be V_{IL} or V_{IH} .
 - 2. Refer to AC Programming Waveforms.
 - 3. $V_H = 12.0V \pm 0.5V$.
 - 4. Manufacturer Code: 1F, Device Code: D5.
 - 5. See details under Software Product Identification Entry/Exit.

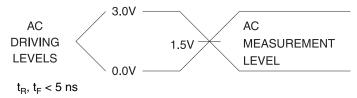

8. DC Characteristics

Symbol	Parameter	Condition	Condition		Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$			10	μΑ
I _{LO}	Output Leakage Current	$V_{I/O} = 0V \text{ to } V_{CC}$			10	μΑ
	V _{CC} Standby Current CMOS	OF 1/ 0.01/1-1/	0° - 40°C		30	μΑ
I _{SB1}		$\overline{CE} = V_{CC} - 0.3V \text{ to } V_{CC}$	Industrial		300	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}}$ = 2.0V to V _{CC}			3	mA
I _{CC}	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA			50	mA
V_{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage					V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			0.45	V
V _{OH1}	Output High Voltage	I _{OH} = -400 μA		2.4		V
V _{OH2}	Output High Voltage CMOS	$I_{OH} = -100 \ \mu A; \ V_{CC} = 4.5 V$		4.2		V

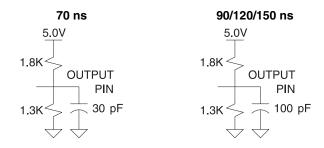
9. AC Read Characteristics

		AT29C010A-70		AT29C010A-90			
Symbol	Parameter	Min	Max	Min	Max	Units	
t _{ACC}	Address to Output Delay		70		90	ns	
t _{CE} ⁽¹⁾	CE to Output Delay		70		90	ns	
t _{OE} ⁽²⁾	OE to Output Delay	0	35	0	40	ns	
t _{DF} ⁽³⁾⁽⁴⁾	CE or OE to Output Float	0	25	0	25	ns	
t _{OH}	Output Hold from \overline{OE} , \overline{CE} or Address, whichever occurred first	0		0		ns	

10. AC Read Waveforms(1)(2)(3)(4)


Notes: 1. $\overline{\text{CE}}$ may be delayed up to t_{ACC} - t_{CE} after the address transition without impact on t_{ACC} .

- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (CL = 5 pF).
- 4. This parameter is characterized and is not 100% tested.



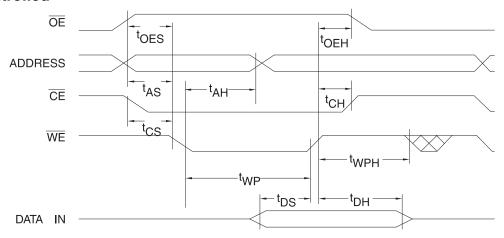
11. Input Test Waveforms and Measurement Level

12. Output Test Load

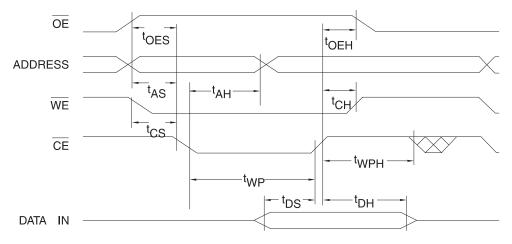
13. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V


Note: 1. This parameter is canharacterized and is not 100% tested.

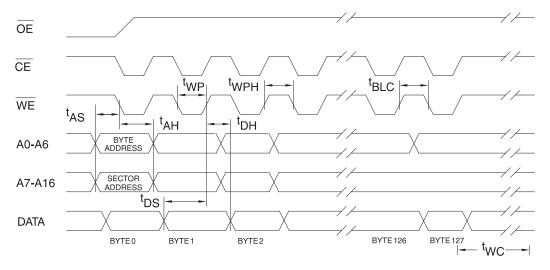
14. AC Byte Load Characteristics


Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{CS}	Chip Select Set-up Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	90		ns
t _{DS}	Data Set-up Time	35		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns
t _{WPH}	Write Pulse Width High	100		ns

15. AC Byte Load Waveforms

15.1 WE Controlled

15.2 **CE** Controlled



16. Program Cycle Characteristics

Symbol	Parameter	Min	Max	Units
t _{WC}	Write Cycle Time		10	ms
t _{AS}	Address Set-up Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{DS}	Data Set-up Time	35		ns
t _{DH}	Data Hold Time	0		ns
t _{WP}	Write Pulse Width	90		ns
t _{BLC}	Byte Load Cycle Time		150	μs
t _{WPH}	Write Pulse Width High	100		ns

17. Program Cycle Waveforms⁽¹⁾⁽²⁾⁽³⁾

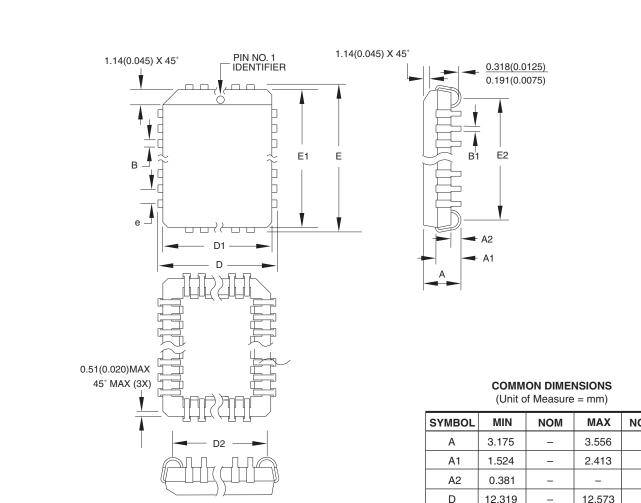
Notes: 1. A7 through A16 must specify the sector address during each high to low transition of $\overline{\text{WE}}$ (or $\overline{\text{CE}}$).

- 2. \overline{OE} must be high when \overline{WE} and \overline{CE} are both low.
- 3. All bytes that are not loaded within the sector being programmed will be indeterminate.

28. Ordering Information

28.1 Green Package Option (Pb/Halide-free)

t _{ACC}	I _{cc}	(mA)				
(ns)	Active Standby		Ordering Code	Package	Operation Range	
70	50	0.3	AT29C010A-70JU	32J		
			AT29C010A-70TU	32T	Industrial	
90	50	0.3	AT29C010A-90JU	32J	(-40° to 85°C)	
			AT29C010A-90TU	32T		


	Package Type			
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)			
32T	32-lead, Thin Small Outline Package (TSOP)			

29. Packaging Information

29.1 32J - PLCC

Notes:

- 1. This package conforms to JEDEC reference MS-016, Variation AE.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

SYMBOL	MIN	NOM	MAX	NOTE		
Α	3.175	_	3.556			
A1	1.524	-	2.413			
A2	0.381	_	_			
D	12.319	_	12.573			
D1	11.354	_	11.506	Note 2		
D2	9.906	_	10.922			
Е	14.859	_	15.113			
E1	13.894	_	14.046	Note 2		
E2	12.471	_	13.487			
В	0.660	_	0.813			
B1	0.330	_	0.533			
е		1.270 TYP				

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)	32J	В