

Dual Very Low Noise Precision Operational Amplifier

OP270

FEATURES

Very Low Noise 5 nV/√Hz @ 1 kHz Max Excellent Input Offset Voltage 75 µV Max Low Offset Voltage Drift 1 µV/°C Max Very High Gain 1500 V/mV Min Outstanding CMR 106 dB Min Slew Rate 2.4 V/µs Typ Gain Bandwidth Product 5 MHz Typ Industry-Standard 8-Lead Dual Pinout

GENERAL DESCRIPTION

The OP270 is a high performance, monolithic, dual operational amplifier with exceptionally low voltage noise, 5 nV/ $\sqrt{\text{Hz}}$ max at 1 kHz. It offers comparable performance to ADI's industry standard OP27.

The OP270 features an input offset voltage below 75 μ V and an offset drift under 1 μ V/°C, guaranteed over the full military temperature range. Open-loop gain of the OP270 is over 1,500,000 into a 10 k Ω load, ensuring excellent gain accuracy and linearity, even in high gain applications. Input bias current is under 20 nA, which reduces errors due to signal source resistance. The OP270's CMR of over 106 dB and PSRR of less than 3.2 μ V/V significantly reduce errors due to ground noise and power supply fluctuations. Power consumption of the dual OP270 is one-third less than two OP278, a significant advantage for power conscious applications. The OP270 is unity-gain stable with a gain bandwidth product of 5 MHz and a slew rate of 2.4 V/ μ s.

CONNECTION DIAGRAMS

The OP270 offers excellent amplifier matching, which is important for applications such as multiple gain blocks, low noise instrumentation amplifiers, dual buffers, and low noise active filters.

The OP270 conforms to the industry-standard 8-lead DIP pinout. It is pin compatible with the MC1458, SE5532/A, RM4558, and HA5102 dual op amps, and can be used to upgrade systems using those devices.

For higher speed applications, the OP271, with a slew rate of $8 \text{ V/}\mu\text{s}$, is recommended. For a quad op amp, see the OP470.

SIMPLIFIED SCHEMATIC

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

			OP270E			OP270F		OP270G				
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
Input Offset Voltage	Vos			10	75		20	150		50	250	μV
Input Offset Current	los	$V_{CM} = 0 V$		1	10		3	15		5	20	nA
Input Bias Current	IB	$V_{CM} = 0 V$		5	20		10	40		15	60	nA
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		80	200		80	200		80		nV p-p
		(Note 1)										
Input Noise		$f_0 = 10 \text{ Hz}$		3.6	6.5		3.6	6.5		3.6		nV/√Hz
Voltage Density		$f_0 = 100 \text{ Hz}$		3.2	5.5		3.2	5.5		3.2		nV/√Hz
	e _n	$f_0 = 1 \text{ kHz}$		3.2	5.0		3.2	5.0		3.2		nV/√Hz
		(Note 2)										
Input Noise		$f_0 = 10 \text{ Hz}$		1.1			1.1			1.1		pA/√Hz
Current Density	in	$f_0 = 100 \text{ Hz}$		0.7			0.7			0.7		pA/√Hz
		$f_0 = 1 \text{ kHz}$		0.6			0.6			0.6		pA/√Hz
Large-Signal		$V_0 = \pm 10 V$										
Voltage Gain	A _{VO}	$R_L = 10 \ k\Omega$	1500	2300		1000	1700		750	1500		V/mV
		$R_L = 2 k\Omega$	750	1200		500	900		350	700		V/mV
Input Voltage Range	IVR	(Note3)	±12	±12.	5	±12	±12.5		±12	±12.5		V
Output Voltage Swing	Vo	$R_L \ge 2 k\Omega$	±12	±13.	5	±12	±13.5		±12	±13.5		V
Common-Mode												
Rejection	CMR	$V_{CM} = \pm 11 V$	106	125		100	120		90	110		dB
Power Supply												
Rejection Ratio	PSRR	$V_S = \pm 4.5 V$		0.56	3.2		1.0	5.6		1.5	6	μV/V
		to ±18 V										
Slew Rate	SR		1.7	2.4		1.7	2.4		1.7	2.4		V/μs
Supply Current	I _{SY}	No Load		4	6.5		4	6.5		4	6.5	mA
(All Amplifiers)												
Gain Bandwidth	GBP			5			5			5		MHz
Product												
Channel Separation	CS	$V_0 = \pm 20 V p-p$										
		$f_0 = 10 \text{ Hz}$	125	175		125	175			175		dB
		(Note 1)										
Input Capacitance	C _{IN}			3			3			3		pF
Input Resistance	R _{IN}			0.4			0.4			0.4		ΜΩ
Differential-Mode	-			•			• •			• •		
Input Resistance	K INCM			20			20			20		$ G\Omega $
Common-Mode				_			_			_		
Settling Time	t _S	$A_V = +1, 10 V$		5			5			5		μs
		Step to 0.01%										

OP270—SPECIFICATIONS ($V_s = \pm 15 V$, $T_A = 25^{\circ}C$, unless otherwise noted.)

NOTES

1. Guaranteed but not 100% tested.

2. Sample tested.

3. Guaranteed by CMR test.

Specifications subject to change without notice.

$\label{eq:specifications} \begin{array}{l} \mbox{SPECIFICATIONS} \\ \mbox{ELECTRICAL SPECIFICATIONS} & (Vs = \pm 15 \ V, -40^{\circ}C \leq \ T_A \leq 85^{\circ}C, \ unless \ otherwise \ noted.) \end{array}$

			OP270E		OP270F		OP270G					
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
Input Offset Voltage Average Input	V _{os}			25	150		45	275		100	400	μV
Offset Voltage Drift	TCVos			0.2	1		0.4	2		0.7	3	μV/°C
Input Offset Current	I _{OS}	$V_{CM} = 0 V$		1.5	30		5	40		15	50	nA
Input Bias Voltage Large-Signal	I _B	$V_{CM} = 0 V$ $V_{O} = \pm 10 V$		6	60		15	70		19	80	nA
Voltage Gain	A _{VO}	$R_{\rm L} = 10 \ \rm k\Omega$ $R_{\rm L} = 2 \ \rm k\Omega$	1000 500	1800 900)	600 300	1400 700		400 225	1250 670		V/mV V/mV
Input Voltage Range*	IVR	_	±12	±12.	5	±12	±12.5		±12	±12.5	5	V
Output Voltage Swing Common-Mode	Vo	$R_L \ge 2 \ k\Omega$	±12	±13.	5	±12	±13.5		±12	±13.5	5	V
Rejection Power Supply	CMR	$V_{CM} = \pm 11 V$	100	120		94	115		90	100		dB
Rejection Ratio	PSRR	$V_{S} = \pm 4.5 V$ to $\pm 18 V$		0.7	5.6		1.8	10		2.0	1.5	$\mu V/V$
Supply Current (All Amplifiers)	I _{SY}	No Load		4.4	7.2		4.4	7.2		4.4	7.2	mA

* Guaranteed by CMR test.

Specifications subject to change without notice.

OP270

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage±18 V
Differential Input Voltage ² ±1.0 V
Differential Input Current ² ±25 mA
Input Voltage Supply Voltage
Output Short-Circuit DurationContinuous
Storage Temperature Range
P, S, Z Package65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) 300°C
Junction Temperature (T_J) 65°C to +150°C

Operating Temperature Range

OP270E, OP270F, OP270G--40°C to +85°C NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

² The OP270's inputs are protected by back-to-back diodes. Current limiting resistors are not used, in order to achieve low noise performance. If differential voltage exceeds +10 V, the input current should be limited to ± 25 mA.

ORDERING GUIDE

Model	$T_{A} = +25^{\circ}C$ $V_{OS} Max$ (μV)	θ _{JC} (°C/W)	θ _{JA} * (°C/W)	Temperature Range	Package Description	Package Option
OP270EZ	75	12	134	XIND	8-Lead CERDIP	Q-8 (Z-Suffix)
OP270FZ	150	12	134	XIND	8-Lead CERDIP	Q-8 (Z-Suffix)
OP270GP	250	37	96	XIND	8-Lead PDIP	N-8 (P-Suffix)
OP270GS	250	27	92	XIND	16-Lead SOIC	RW-16 (S-Suffix)

 ${}^{*}\theta_{JA}$ is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for CERDIP and PDIP packages; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

For military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp.

SMD Part Number	ADI Equivalent
5962-8872101PA	OP270AZMDA

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP270 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP270

OUTLINE DIMENSIONS

8-Lead Ceramic Dual In-Line Package [CERDIP]

Z-Suffix (Q-8)

Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN 8-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-8)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body S-Suffix (RW-16)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN