

Low Noise, High Speed Amplifier for 16-Bit Systems

AD8021

FEATURES

Low noise 2.1 nV/√Hz input voltage noise 2.1 pA/√Hz input current noise **Custom compensation** Constant bandwidth from G = -1 to G = -10**High speed** 200 MHz (G = -1)190 MHz (G = -10) Low power 34 mW or 6.7 mA typical for 5 V supply Output disable feature, 1.3 mA Low distortion -93 dBc second harmonic, f_c = 1 MHz -108 dBc third harmonic, f_c = 1 MHz **DC** precision 1 mV maximum input offset voltage 0.5 µV/°C input offset voltage drift Wide supply range, 5 V to 24 V Low price Small packaging Available in SOIC-8 and MSOP-8

APPLICATIONS

ADC preamps and drivers Instrumentation preamps Active filters Portable instrumentation Line receivers Precision instruments Ultrasound signal processing High gain circuits

GENERAL DESCRIPTION

The AD8021 is an exceptionally high performance, high speed voltage feedback amplifier that can be used in 16-bit resolution systems. It is designed to have both low voltage and low current noise (2.1 nV/ $\sqrt{\text{Hz}}$ typical and 2.1 pA/ $\sqrt{\text{Hz}}$ typical) while operating at the lowest quiescent supply current (7 mA @ ±5 V) among today's high speed, low noise op amps. The AD8021 operates over a wide range of supply voltages from ±2.25 V to ±12 V, as well as from single 5 V supplies, making it ideal for high speed, low power instruments. An output disable pin allows further reduction of the quiescent supply current to 1.3 mA.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAM

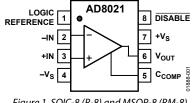


Figure 1. SOIC-8 (R-8) and MSOP-8 (RM-8)

The AD8021 allows the user to choose the gain bandwidth product that best suits the application. With a single capacitor, the user can compensate the AD8021 for the desired gain with little trade-off in bandwidth. The AD8021 is a well-behaved amplifier that settles to 0.01% in 23 ns for a 1 V step. It has a fast overload recovery of 50 ns.

The AD8021 is stable over temperature with low input offset voltage drift and input bias current drift, 0.5 μ V/°C and 10 nA/°C, respectively. The AD8021 is also capable of driving a 75 Ω line with ±3 V video signals.

The AD8021 is both technically superior and priced considerably less than comparable amps drawing much higher quiescent current. The AD8021 is a high speed, general-purpose amplifier, ideal for a wide variety of gain configurations and can be used throughout a signal processing chain and in control loops. The AD8021 is available in both standard 8-lead SOIC and MSOP packages in the industrial temperature range of -40°C to +85°C.

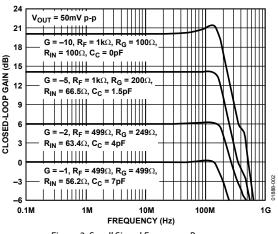


Figure 2. Small Signal Frequency Response

©2006 Analog Devices, Inc. All rights reserved.

SPECIFICATIONS

 $V_{\text{S}}=\pm5$ V, @ $T_{\text{A}}=25^{\circ}\text{C},$ $R_{\text{L}}=1$ k $\Omega,$ gain = +2, unless otherwise noted.

Table 1.

		AD8021	AD8021AR/AD8021ARM		
Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Small Signal Bandwidth	$G = +1, C_C = 10 \text{ pF}, V_O = 0.05 \text{ V p-p}$	355	490		MHz
	$G = +2, C_C = 7 \text{ pF}, V_O = 0.05 \text{ V p-p}$	160	205		MHz
	$G = +5$, $C_C = 2 \text{ pF}$, $V_O = 0.05 \text{ V p-p}$	150	185		MHz
	$G = +10, C_{C} = 0 pF, V_{O} = 0.05 V p-p$	110	150		MHz
Slew Rate, 1 V Step	$G = +1, C_c = 10 \text{ pF}$	95	120		V/µs
	$G = +2, C_c = 7 pF$	120	150		V/µs
	$G = +5, C_c = 2 pF$	250	300		V/µs
	$G = +10, C_{C} = 0 pF$	380	420		V/μs
Settling Time to 0.01%	$V_0 = 1 \text{ V step}, R_L = 500 \Omega$		23		ns
Overload Recovery (50%)	± 2.5 V input step, G = +2		50		ns
DISTORTION/NOISE PERFORMANCE					
f = 1 MHz					
HD2	$V_0 = 2 V p - p$		-93		dBc
HD3	$V_0 = 2 V p - p$		-108		dBc
f = 5 MHz	·· - · P P				
HD2	$V_0 = 2 V p - p$		-70		dBc
HD3	$V_0 = 2 V p - p$		-80		dBc
Input Voltage Noise	f = 50 kHz		2.1	2.6	nV/√Hz
Input Current Noise	f = 50 kHz		2.1	2.0	pA/√Hz
Differential Gain Error	NTSC, $R_L = 150 \Omega$		0.03		%
Differential Phase Error	NTSC, $R_L = 150 \Omega$		0.04		Degree
DC PERFORMANCE					
Input Offset Voltage			0.4	1.0	mV
Input Offset Voltage Drift	T _{MIN} to T _{MAX}		0.5		μV/°C
Input Bias Current	+Input or –input		7.5	10.5	μΑ
Input Bias Current Drift	input of input		10	10.5	nA/°C
Input Offset Current			0.1	0.5	±μA
Open-Loop Gain		82	86	0.5	dB
INPUT CHARACTERISTICS		02	00		GD
Input Resistance			10		MΩ
Common-Mode Input Capacitance			10		pF
Input Common-Mode Voltage Range			-4.1 to +4.6		V
Common-Mode Rejection Ratio	$V_{CM} = \pm 4 V$	-86	-98		dB
OUTPUT CHARACTERISTICS	VCM — 14 V	-80	-98		UD
Output Voltage Swing		25 to 122	20 to 124		v
Linear Output Current		-3.5 to +3.2	-3.8 to +3.4		-
Short-Circuit Current			60		mA
			75		mA
Capacitive Load Drive for 30% Overshoot	V _o = 50 mV p-p/1 V p-p		15/120		pF
Off Isolation	f = 10 MHz		-40		dB
Turn-On Time	$V_{\rm O}$ = 0 V to 2 V, 50% logic to 50% output		45		ns
Turn-Off Time	$V_{\rm O}$ = 0 V to 2 V, 50% logic to 50% output		50		ns
DISABLE Voltage—Off/On	VDISABLE – VLOGIC REFERENCE		1.75/1.90		V
Enabled Leakage Current	LOGIC REFERENCE = 0.4 V		70		μΑ
	$\overline{\text{DISABLE}} = 4.0 \text{ V}$		2		μA

Rev. F | Page 3 of 28

AD8021

		AD8	AD8021AR/AD8021ARM		
Parameter	Conditions	Min	Тур	Max	Unit
Disabled Leakage Current	LOGIC REFERENCE = 0.4 V		30		μΑ
	$\overline{\text{DISABLE}} = 0.4 \text{ V}$		33		μΑ
POWER SUPPLY					
Operating Range		±2.25	±5	±12.0	V
Quiescent Current	Output enabled		7.0	7.7	mA
	Output disabled		1.3	1.6	mA
+Power Supply Rejection Ratio	$V_{CC} = 4 V$ to 6 V, $V_{EE} = -5 V$	-86	-95		dB
–Power Supply Rejection Ratio	$V_{CC} = 5 V, V_{EE} = -6 V to -4 V$	-86	-95		dB

 $V_{\text{S}}=\pm 12$ V, @ $T_{\text{A}}=25^{\circ}\text{C},$ $R_{\text{L}}=1$ k $\Omega,$ gain = +2, unless otherwise noted.

Table 2.

		AD	AD8021AR/AD8021ARM		
Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Small Signal Bandwidth	$G = +1, C_C = 10 \text{ pF}, V_O = 0.05 \text{ V p-p}$	520	560		MHz
	$G = +2, C_C = 7 \text{ pF}, V_O = 0.05 \text{ V p-p}$	175	220		MHz
	$G = +5$, $C_C = 2 \text{ pF}$, $V_O = 0.05 \text{ V p-p}$	170	200		MHz
	$G = +10, C_C = 0 pF, V_0 = 0.05 V p-p$	125	165		MHz
Slew Rate, 1 V Step	$G = +1, C_C = 10 \text{ pF}$	105	130		V/µs
	$G = +2, C_C = 7 pF$	140	170		V/µs
	$G = +5, C_C = 2 pF$	265	340		V/µs
	$G = +10, C_C = 0 pF$	400	460		V/µs
Settling Time to 0.01%	$V_{\rm O}$ = 1 V step, R_L = 500 Ω		21		ns
Overload Recovery (50%)	± 6 V input step, G = +2		90		ns
DISTORTION/NOISE PERFORMANCE					
f = 1 MHz					
HD2	$V_0 = 2 V p - p$		-95		dBc
HD3	$V_0 = 2 V p - p$		-116		dBc
f = 5 MHz					
HD2	$V_0 = 2 V p - p$		-71		dBc
HD3	V ₀ = 2 V p-p		-83		dBc
Input Voltage Noise	f = 50 kHz		2.1	2.6	nV/√⊦
Input Current Noise	f = 50 kHz		2.1		pA/√⊦
Differential Gain Error	NTSC, $R_L = 150 \Omega$		0.03		%
Differential Phase Error	NTSC, $R_L = 150 \Omega$		0.04		Degre
DC PERFORMANCE					
Input Offset Voltage			0.4	1.0	mV
Input Offset Voltage Drift	T _{MIN} to T _{MAX}		0.2		μV/°C
Input Bias Current	+Input or –input		8	11.3	μΑ
Input Bias Current Drift			10		nA/°C
Input Offset Current	Input Offset Current		0.1	0.5	±μΑ
Open-Loop Gain		84	88		dB
INPUT CHARACTERISTICS					
Input Resistance			10		MΩ
Common-Mode Input Capacitance			1		рF
Input Common-Mode Voltage Range			-11.1 to +1	1.6	V
Common-Mode Rejection Ratio	$V_{CM} = \pm 10 V$	-86	-96		dB

AD8021

		AD802	1AR/AD8021ARM	1	
Parameter	Conditions	Min Typ Max		Max	Unit
OUTPUT CHARACTERISTICS					
Output Voltage Swing		-10.2 to +9.8	-10.6 to +10.2		V
Linear Output Current			70		mA
Short-Circuit Current			115		mA
Capacitive Load Drive for 30% Overshoot	$V_0 = 50 \text{ mV p-p/1 V p-p}$		15/120		pF
DISABLE CHARACTERISTICS					
Off Isolation	f = 10 MHz		-40		dB
Turn-On Time	$V_{\rm O}$ = 0 V to 2 V, 50% logic to 50% output	45			ns
Turn-Off Time	$V_{\rm O}=0V$ to 2 V, 50% logic to 50% output	50			ns
DISABLE Voltage—Off/On	$V_{\text{DISABLE}} - V_{\text{LOGIC REFERENCE}}$		1.80/1.95		V
Enabled Leakage Current	LOGIC REFERENCE = 0.4 V		70		μA
	$\overline{\text{DISABLE}} = 4.0 \text{ V}$		2		μA
Disabled Leakage Current	LOGIC REFERENCE = 0.4 V	30			μA
	$\overline{\text{DISABLE}} = 0.4 \text{ V}$		33		μA
POWER SUPPLY					
Operating Range		±2.25	±5	±12.0	v
Quiescent Current	Output enabled		7.8	8.6	mA
	Output disabled		1.7	2.0	mA
+Power Supply Rejection Ratio	$V_{CC} = 11 \text{ V}$ to 13 V, $V_{EE} = -12 \text{ V}$	-86	-96		dB
–Power Supply Rejection Ratio	$V_{CC} = 12 \text{ V}, V_{EE} = -13 \text{ V} \text{ to} -11 \text{ V}$	-86	-100		dB

 V_{S} = 5 V, @ T_{A} = 25°C, R_{L} = 1 k $\Omega,$ gain = +2, unless otherwise noted.

Table 3.

		AD8	AD8021AR/AD8021ARM		
Parameter	Conditions	Min	Min Typ Max		Unit
DYNAMIC PERFORMANCE					
–3 dB Small Signal Bandwidth	$G = +1, C_{C} = 10 \text{ pF}, V_{O} = 0.05 \text{ V p-p}$	270	305		MHz
	$G = +2, C_C = 7 \text{ pF}, V_O = 0.05 \text{ V p-p}$	155	190		MHz
	$G = +5$, $C_C = 2 \text{ pF}$, $V_O = 0.05 \text{ V p-p}$	135	165		MHz
	$G = +10, C_C = 0 pF, V_0 = 0.05 V p-p$	95	130		MHz
Slew Rate, 1 V Step	$G = +1, C_C = 10 \text{ pF}$	80	110		V/µs
	$G = +2, C_C = 7 pF$	110	140		V/µs
	$G = +5, C_C = 2 pF$	210	280		V/µs
	$G = +10, C_C = 0 pF$	290	390		V/µs
Settling Time to 0.01%	$V_0 = 1 \text{ V step}, R_L = 500 \Omega$		28		ns
Overload Recovery (50%)	0 V to $2.5 V$ input step, G = +2		40		ns
DISTORTION/NOISE PERFORMANCE					
f = 1 MHz					
HD2	$V_0 = 2 V p - p$		-84		dBc
HD3	$V_0 = 2 V p - p$		-91		dBc
f = 5 MHz					
HD2	$V_0 = 2 V p - p$		-68		dBc
HD3	$V_0 = 2 V p - p$		-81		dBc
Input Voltage Noise	f = 50 kHz		2.1	2.6	nV/√H
Input Current Noise	f = 50 kHz		2.1		pA/√H

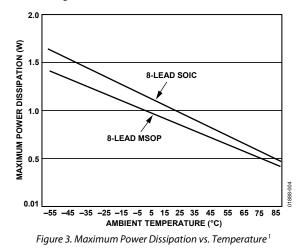
AD8021

		AD8021AR/AD8021ARM			1
Parameter	Conditions	Min	Тур Мах		Unit
DC PERFORMANCE					
Input Offset Voltage			0.4	1.0	mV
Input Offset Voltage Drift	T _{MIN} to T _{MAX}		0.8		μV/°C
Input Bias Current			7.5	10.3	μΑ
Input Bias Current Drift			10		nA/°C
Input Offset Current			0.1	0.5	±μΑ
Open-Loop Gain		72	76		dB
NPUT CHARACTERISTICS					
Input Resistance			10		MΩ
Common-Mode Input Capacitance			1		рF
Input Common-Mode Voltage Range			0.9 to 4.6		V
Common-Mode Rejection Ratio	1.5 V to 3.5 V	-84	-98		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing		1.25 to 3.38	1.10 to 3.60		V
Linear Output Current			30		mA
Short-Circuit Current			50		mA
Capacitive Load Drive for 30% Overshoot	$V_0 = 50 \text{ mV } p - p/1 \text{ V } p - p$		10/120		рF
DISABLE CHARACTERISTICS					
Off Isolation	f = 10 MHz		-40		dB
Turn-On Time	$V_0 = 0$ V to 1 V, 50% logic to 50% output		45		ns
Turn-Off Time	$V_0 = 0$ V to 1 V, 50% logic to 50% output		50		ns
DISABLE Voltage—Off/On	$V_{\text{DISABLE}} - V_{\text{LOGIC REFERENCE}}$		1.55/1.70		V
Enabled Leakage Current	LOGIC REFERENCE = $0.4 V$		70		μA
-	$\overline{\text{DISABLE}} = 4.0 \text{ V}$		2		μA
Disabled Leakage Current	LOGIC REFERENCE = $0.4 V$		30		μA
<u> </u>	$\overline{\text{DISABLE}} = 0.4 \text{ V}$		33		μA
POWER SUPPLY					
Operating Range		±2.25	±5	±12.0	v
Quiescent Current	Output enabled		6.7	7.5	mA
	Output disabled		1.2	1.5	mA
+Power Supply Rejection Ratio	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ V}_{EE} = 0 \text{ V}$	-74	-82		dB
–Power Supply Rejection Ratio	$V_{CC} = 5 V, V_{EE} = -0.5 V \text{ to } +0.5 V$	-76	-84		dB

ABSOLUTE MAXIMUM RATINGS

Table 4.

1	
Parameter	Rating
Supply Voltage	26.4 V
Power Dissipation	Observed power derating curves
Input Voltage (Common Mode)	$\pm V_s \pm 1 V$
Differential Input Voltage ¹	±0.8 V
Differential Input Current	±10 mA
Output Short-Circuit Duration	Observed power derating curves
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	–40°C to +85°C
Lead Temperature (Soldering, 10 sec)	300°C

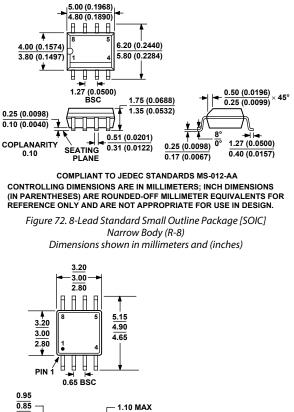

 1 The AD8021 inputs are protected by diodes. Current-limiting resistors are not used to preserve the low noise. If a differential input exceeds ± 0.8 V, the input current should be limited to ± 10 mA.

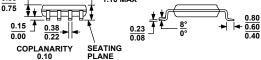
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8021 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit can cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

While the AD8021 is internally short-circuit protected, this can not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.


 1 Specification is for device in free air: 8-lead SOIC: θ_{JA} = 125°C/W; 8-lead MSOP: θ_{JA} = 145°C/W.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 73. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8021AR	-40°C to +85°C	8-Lead SOIC	R-8	
AD8021AR-REEL	–40°C to +85°C	8-Lead SOIC	R-8	
AD8021AR-REEL7	-40°C to +85°C	8-Lead SOIC	R-8	
AD8021ARZ ¹	–40°C to +85°C	8-Lead SOIC	R-8	
AD8021ARZ-REEL ¹	–40°C to +85°C	8-Lead SOIC	R-8	
AD8021ARZ-REEL71	–40°C to +85°C	8-Lead SOIC	R-8	
AD8021ARM	-40°C to +85°C	8-Lead MSOP	RM-8	HNA
AD8021ARM-REEL	–40°C to +85°C	8-Lead MSOP	RM-8	HNA
AD8021ARM-REEL7	-40°C to +85°C	8-Lead MSOP	RM-8	HNA
AD8021ARMZ ¹	-40°C to +85°C	8-Lead MSOP	RM-8	HNA#
AD8021ARMZ-REEL ¹	-40°C to +85°C	8-Lead MSOP	RM-8	HNA#
AD8021ARMZ-REEL71	-40°C to +85°C	8-Lead MSOP	RM-8	HNA#

 $^{1}Z = Pb$ -free part, # denotes lead-free product may be top or bottom marked.