

LM339 - Low Power Low Offset Voltage Quad Comparator

Features

Typical Application

Wide supply voltage range	
LM139/139A Series	2 to 36 V _{DC} or ±1 to ±18 V _{DC}
LM2901:	2 to 36 V _{DC} or ±1 to ±18 V _{DC}
LM3302:	2 to 28 V _{DC} or ±1 to ±14 V _{DC}
Very low supply current drain (0.8 mA) - independent of supply voltage	
Low input biasing current:	25 nA
Low input offset current:	±5 nA
Offset voltage:	±3 mV
Input common-mode voltage range includes GND	
Differential input voltage range equal to the power supply voltage	
Low output saturation voltage:	250 mV at 4 mA
Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems	

Parametric Table

Response Time	0.5 us
Output Bus	Open Drain
Supply Min	2 Volt
Supply Max	36 Volt
Channels	4 Channels
Offset Voltage max, 25C	2, 5 mV
Output Current	16 mA
Input Range	Vcm to V-
Supply Current Per Channel	0.2 mA
PowerWise Rating 3	100 uA x us
Max Input Bias Current	400 nA
Special Features	Undefined
Temperature Min	-25 deg C
Temperature Max	85 deg C
Function	Comparator

Connection Diagram

Typical Performance

Applications

- High precision comparators
- Reduced V_{os} drift over temperature
- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Package Availability, Models

			Pa	ackage				Factory Le	ad Time			Std	Package
Part Number	Туре	Pins	Spec.	MSL Rating	Peak Reflow	RoHS Report	CAD Symbols	Weeks	Qty	Models		Pack Size	Marking Format
			STD	1	235			Full prod	uction			rail	NSUZXYTT
LM339AM	SOIC NARROW	14	NOPB	1	260	RoHS	Download	6 weeks	2500	N/A		of 55	LM339AM
		\vdash	STD	1	235			Full prod	uction			rail	
LM339M	SOIC NARROW	14				RoHS	Download	6 weeks	2000	N/A		of 55	NSUZXYTT LM339M
			NOPB STD		260 235			O Weeks	2000				
LM339AMX	SOIC NARROW	14	210	1	230	RoHS	Download	Full prod	uction	N/A		reel of	NSUZXYTT
FINDSAVINY	SOIC NAININOW	14	NOPB	1	260	100113	DOWINGAG	6 weeks	7500	INA		2500	LM339AM
			STD	1	235			Full prod	uction			reel	NSUZXYTT
LM339MX	SOIC NARROW	14	NOPB	1	260	RoHS	Download	6 weeks	5000	N/A		of 2500	LM339M
			STD	1	NA			Full prod	uction			rail	
LM339AN	MDIP	14				RoHS	Download		ı	N/A		of 25	NSUZXYYTTE# LM339AN
			NOPB	1	NA			8 weeks	3000			25	
LMOOON	MDID		STD	1	NA	D-UO	Danieland	Full prod	uction	N1/A		rail	NSUZXYYTTE#
LM339N	MDIP	14	NOPB	1	NA	RoHS	Download	6 weeks	3000	N/A		of 25	LM339N
LM339J	CERDIP	14	STD	1	NA	RoHS	Download	Full prod	uction	N/A		rail of	NSUZXYYTT
LIVISSES	CERDIF	14	SID		INA	KUHS	Download	6 weeks	500	N/A		25	LM339J
LM339 MDC			Unpa	ckaged [Die			Obsol N/A	ete 40000	N/A		tray of	-
								Lifetime				N/A wafer jar	
LM339 MWC				Wafer				N/A	75000	N/A		of N/A	-

Obsolete Versions

Obsolete Part	Alternate Part or Supplier	Source	Last Time Buy Date
LM339AJ	LM339AN	NATIONAL SEMICONDUCTOR	04/04/95

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Reliability Metrics

Part Number	Process	EFR Reject	EFR Sample Size	PPM *	LTA Rejects	LTA Device Hours	FITS	MTTF (Hours)
LM339 MDC	SLM	0	42786	0	0	3352500	2	951281028
LM339 MWC	SLM	0	42786	0	0	3352500	2	951281028
LM339AM	SLM	0	42786	0	0	3352500	2	951281028
LM339AMX	SLM	0	42786	0	0	3352500	2	951281028
LM339AN	SLM	0	42786	0	0	3352500	2	951281028
LM339J	SLM	0	42786	0	0	3352500	2	951281028
LM339M	SLM	0	42786	0	0	3352500	2	951281028
LM339MX	SLM	0	42786	0	0	3352500	2	951281028
LM339N	SLM	0	42786	0	0	3352500	2	951281028

Note: The Early Failure Rates were calculated as point estimates. The Long Term Failure Rates were calculated at 60% confidence using the Arrhenius equation at 0.7eV activation energy and derating the assumed stress temperature of 150°C to an application temperature of 55°C.

For more information on Reliability Metrics, please click here.

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic— where the low power drain of the LM339 is a distinct advantage over standard comparators.

Features

- Wide supply voltage range
- LM139/139A Series
 2 to 36 V_{DC} or ±1 to ±18 V_{DC}
 LM2901:
 2 to 36 V_{DC} or ±1 to ±18 V_{DC}
- LM3302: 2 to 28 V_{DC} or ±1 to ±14 V_{DC}
- Very low supply current drain (0.8 mA) independent of supply voltage
- Low input biasing current: 25 nA
- Low input offset current: ±5 nA
- Offset voltage: ±3 mV
 Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage: 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Advantages

- High precision comparators
- Reduced V_{OS} drift over temperature
- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

One-Shot Multivibrator with Input Lock Out

00570612

Absolute Maximum Ratings (Note 10)

Distributors for availability and specifications.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/

LM139/LM239/LM339

LM139A/LM239A/LM339A LM3302 LM2901

Supply Voltage, V+ $36\ V_{DC}$ or $\pm 18\ V_{DC}$ $28\ V_{DC}$ or $\pm 14\ V_{DC}$ Differential Input Voltage (Note 8) $36\ V_{DC}$ $28\ V_{DC}$ $28\ V_{DC}$ Input Voltage $-0.3\ V_{DC}$ to $+36\ V_{DC}$ $-0.3\ V_{DC}$ to $+28\ V_{DC}$

Input Current (V_{IN} <-0.3 V_{DC}),

(Note 3) 50 mA 50 mA

Power Dissipation (Note 1)

Molded DIP 1050 mW 1050 mW

Cavity DIP 1190 mW Small Outline Package 760 mW

Output Short-Circuit to GND,

(Note 2) Continuous Continuous

Storage Temperature Range -65°C to +150°C -65°C to +150°C

Lead Temperature

(Soldering, 10 seconds) 260°C 260°C

Operating Temperature Range -40°C to +85°C

LM339/LM339A 0°C to +70°C
LM239/LM239A -25°C to +85°C
LM2901 -40°C to +85°C
LM139/LM139A -55°C to +125°C

Soldering Information

Dual-In-Line Package

Soldering (10 seconds) 260°C 260°C

Small Outline Package

Vapor Phase (60 seconds)215°C215°CInfrared (15 seconds)220°C220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of

soldering surface mount devices.

ESD rating (1.5 k Ω in series with 100 pF) 600V 600V

Electrical Characteristics

(V⁺=5 V_{DC} , $T_A = 25$ °C, unless otherwise stated)

Conditions	l	LM13	9A	LM23	9A, L	M339A		LM139		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
(Note 9)		1.0	2.0		1.0	2.0		2.0	5.0	mV_{DC}
$I_{IN(+)}$ or $I_{IN(-)}$ with Output in		25	100		25	250		25	100	nA _{DC}
Linear Range, (Note 5), V _{CM} =0V										
I _{IN(+)} -I _{IN(-)} , V _{CM} =0V		3.0	25		5.0	50		3.0	25	nA _{DC}
V ⁺ =30 V _{DC} (LM3302,	0		V ⁺ -1.5	0		V+-1.5	0		V+-1.5	V _{DC}
V ⁺ = 28 V _{DC}) (Note 6)										
$R_L = \infty$ on all Comparators,		0.8	2.0		0.8	2.0		0.8	2.0	mA_{DC}
$R_L = \infty$, $V^+ = 36V$,					1.0	2.5		1.0	2.5	mA_DC
(LM3302, $V^+ = 28 V_{DC}$)										
$R_L \ge 15 \text{ k}\Omega, V^+ = 15 V_{DC}$	50	200		50	200		50	200		V/mV
$V_O = 1 V_{DC}$ to 11 V_{DC}										
V _{IN} = TTL Logic Swing, V _{REF} =		300			300			300		ns
$1.4 V_{DC}, V_{RL} = 5 V_{DC},$										
	$\begin{split} &(\text{Note 9}) \\ &I_{\text{IN(+)}} \text{ or } I_{\text{IN(-)}} \text{ with Output in} \\ &\text{Linear Range, (Note 5), } V_{\text{CM}} = 0V \\ &I_{\text{IN(+)}} - I_{\text{IN(-)}}, V_{\text{CM}} = 0V \\ &V^{+} = 30 \ V_{\text{DC}} \text{ (LM3302,} \\ &V^{+} = 28 \ V_{\text{DC}}) \text{ (Note 6)} \\ &R_{\text{L}} = \infty \text{ on all Comparators,} \\ &R_{\text{L}} = \infty, \ V^{+} = 36V, \\ &(\text{LM3302, } V^{+} = 28 \ V_{\text{DC}}) \\ &R_{\text{L}} \ge 15 \ k\Omega, \ V^{+} = 15 \ V_{\text{DC}} \\ &V_{\text{O}} = 1 \ V_{\text{DC}} \text{ to } 11 \ V_{\text{DC}} \\ &V_{\text{IN}} = \text{TTL Logic Swing, } V_{\text{REF}} = \end{split}$	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline & Min & Typ & Max & Min \\ \hline & (Note 9) & & 1.0 & 2.0 \\ \hline & I_{IN(+)} \text{ or } I_{IN(-)} \text{ with Output in} & 25 & 100 \\ \hline & I_{IN(+)} I_{IN(-)} I_{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline & Min & Typ & Max & Min & Typ & Max & Min \\\hline (Note 9) & & 1.0 & 2.0 & & 1.0 & 2.0 \\\hline I_{IN(+)} \text{ or } I_{IN(-)} \text{ with Output in} & & 25 & 100 & & 25 & 250 \\\hline I_{IN(+)} I_{IN(-)}, V_{CM} = 0V & & 3.0 & 25 & & 5.0 & 50 \\\hline V^{+} = 30 \ V_{DC} \ (LM3302, & 0 & V^{+} - 1.5 & 0 & V^{+} - 1.5 & 0 \\\hline V^{+} = 28 \ V_{DC}) \ (Note 6) & & & & & & & & & & & & & & & & & & $	$\begin{array}{ c c c c c c c c }\hline & Min & Typ & Max & Min & Typ & Max & Min & Typ\\\hline & (Note 9) & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Electrical Characteristics (Continued)

(V⁺=5 V_{DC} , $T_A = 25^{\circ}C$, unless otherwise stated)

Parameter	Conditions	LM139	LM23	9A, LN	1339A		Units			
		Min Typ	Max	Min	Тур	Max	Min	Тур	Max	
	$R_L = 5.1 \text{ k}\Omega$									
Response Time	$V_{RL} = 5 \ V_{DC}, \ R_{L} = 5.1 \ k\Omega,$	1.3			1.3			1.3		μs
	(Note 7)									
Output Sink Current	$V_{IN(-)} = 1 \ V_{DC}, \ V_{IN(+)} = 0,$	6.0 16		6.0	16		6.0	16		mA _{DC}
	$V_{O} \le 1.5 V_{DC}$									
Saturation Voltage	$V_{IN(-)} = 1 V_{DC}, V_{IN(+)} = 0,$	250	400		250	400		250	400	mV_{DC}
	I _{SINK} ≤ 4 mA									
Output Leakage	$V_{IN(+)} = 1 \ V_{DC}, V_{IN(-)} = 0,$	0.1			0.1			0.1		nA _{DC}
Current	$V_O = 5 V_{DC}$									

Electrical Characteristics

(V⁺ = 5 V_{DC} , $T_A = 25$ °C, unless otherwise stated)

Parameter	Conditions	LM2	239, L	M339		LM29	01		LM33	02	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	(Note 9)		2.0	5.0		2.0	7.0		3	20	mV_{DC}
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$ with Output in		25	250		25	250		25	500	nA _{DC}
	Linear Range, (Note 5), V _{CM} =0V										
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V$		5.0	50		5	50		3	100	nA _{DC}
Input Common-Mode	$V^{+} = 30 V_{DC} (LM3302,$	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	V _{DC}
Voltage Range	$V^{+} = 28 V_{DC}$) (Note 6)										
Supply Current	R _L = ∞ on all Comparators,		0.8	2.0		0.8	2.0		0.8	2.0	mA _{DC}
	$R_L = \infty, \ V^+ = 36V,$		1.0	2.5		1.0	2.5		1.0	2.5	mA _{DC}
	$(LM3302, V^+ = 28 V_{DC})$										
Voltage Gain	$R_L \ge 15 \text{ k}\Omega, V^+ = 15 \text{ V}_{DC}$	50	200		25	100		2	30		V/mV
	$V_O = 1 V_{DC}$ to 11 V_{DC}										
Large Signal	V_{IN} = TTL Logic Swing, V_{REF} =		300			300			300		ns
Response Time	$1.4 V_{DC}, V_{RL} = 5 V_{DC},$										
	$R_L = 5.1 \text{ k}\Omega,$										
Response Time	$V_{RL} = 5 \ V_{DC}, \ R_{L} = 5.1 \ k\Omega,$		1.3			1.3			1.3		μs
	(Note 7)										
Output Sink Current	$V_{IN(-)} = 1 \ V_{DC}, \ V_{IN(+)} = 0,$	6.0	16		6.0	16		6.0	16		mA _{DC}
	$V_O \le 1.5 V_{DC}$										
Saturation Voltage	$V_{IN(-)} = 1 \ V_{DC}, \ V_{IN(+)} = 0,$		250	400		250	400		250	500	mV_{DC}
	I _{SINK} ≤ 4 mA										
Output Leakage	$V_{IN(+)} = 1 \ V_{DC}, V_{IN(-)} = 0,$		0.1			0.1			0.1		nA _{DC}
Current	$V_O = 5 V_{DC}$										

Electrical Characteristics

 $(V^+ = 5.0 V_{DC}, (Note 4))$

Parameter	Conditions	LM1	LM2	39A, LI	M339A	LM	Units		
		Min Typ	Max	Min	Тур	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)		4.0			4.0		9.0	mV_{DC}
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V$		100			150		100	nA _{DC}
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$ with Output in		300			400		300	nA _{DC}
	Linear Range, V _{CM} = 0V (Note 5)								
Input Common-Mode	V ⁺ =30 V _{DC} (LM3302,	0	V+-2.0	0	,	V+-2.0	0	V+-2.0	V _{DC}
Voltage Range	V ⁺ = 28 V _{DC}) (Note 6)								

Electrical Characteristics (Continued)

 $(V^+ = 5.0 V_{DC}, (Note 4))$

Parameter	Conditions	LM13	LM23	39A, L	M339A	LM13	Units		
		Min Typ	Max	Min	Тур	Max	Min Typ	Max	
Saturation Voltage	$V_{IN(-)}=1 \ V_{DC}, \ V_{IN(+)}=0,$		700			700		700	mV_{DC}
	I _{SINK} ≤ 4 mA								
Output Leakage Current	$V_{IN(+)} = 1 V_{DC}, V_{IN(-)} = 0,$		1.0			1.0		1.0	μA _{DC}
	$V_{\rm O} = 30 \ V_{\rm DC}$, (LM3302,								
	$V_O = 28 V_{DC}$								
Differential Input Voltage	Keep all V_{IN} 's $\geq 0 V_{DC}$ (or V^- ,		36			36		36	V _{DC}
	if used), (Note 8)								

Electrical Characteristics

 $(V^+ = 5.0 V_{DC}, (Note 4))$

Parameter	Conditions	LM	239, I	LM339		LM29	901		LM33	02	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	(Note 9)			9.0		9	15			40	mV_{DC}
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V$			150		50	200			300	nA _{DC}
Input Bias Current	I _{IN(+)} or I _{IN(-)} with Output in			400		200	500			1000	nA _{DC}
	Linear Range, V _{CM} = 0V (Note 5)										
Input Common-Mode	$V^{+} = 30 V_{DC} (LM3302, V^{+} = 28 V_{DC})$			V+-2.0	0		V+-2.0	0		V+-2.0	V _{DC}
Voltage Range	(Note 6)										
Saturation Voltage	$V_{IN(-)} = 1 V_{DC}, V_{IN(+)} = 0,$			700		400	700			700	mV_{DC}
	I _{SINK} ≤ 4 mA										
Output Leakage Current	$V_{IN(+)} = 1 \ V_{DC}, \ V_{IN(-)} = 0,$			1.0			1.0			1.0	μA _{DC}
	$V_{\rm O} = 30 \ V_{\rm DC}, \ (LM3302, \ V_{\rm O} = 28 \ V_{\rm DC})$										
Differential Input Voltage	Keep all V_{IN} 's $\geq 0 V_{DC}$ (or V^- ,			36			36			28	V _{DC}
	if used), (Note 8)										

Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 95°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a 150°C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small (P_D≤100 mW), provided the output transistors are allowed to saturate.

Note 2: Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V⁺.

Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V_{DC} (at 25°)C.

Note 4: These specifications are limited to $-55^{\circ}C \le T_A \le +125^{\circ}C$, for the LM139/LM139A. With the LM239/LM239A, all temperature specifications are limited to $-25^{\circ}C \le T_A \le +85^{\circ}C$, the LM339/LM339A temperature specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$, and the LM2901, LM3302 temperature range is $-40^{\circ}C \le T_A \le +85^{\circ}C$.

Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V⁺ –1.5V at 25°C, but either or both inputs can go to +30 V_{DC} without damage (25V for LM3302), independent of the magnitude of V⁺.

Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.

Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V_{DC} (or 0.3 V_{DC}below the magnitude of the negative power supply, if used) (at 25°C).

Note 9: At output switch point, $V_O \approx 1.4 \ V_{DC}$, $R_S = 0\Omega$ with V⁺ from 5 V_{DC} to 30 V_{DC} ; and over the full input common-mode range (0 V_{DC} to V⁺ -1.5 V_{DC}), at 25°C. For LM3302, V⁺ from 5 V_{DC} to 28 V_{DC} .

Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications.

Connection Diagrams

Dual-In-Line Package

00570602

Order Number LM139J, LM139J/883 (Note 11), LM139AJ,
LM139AJ/883 (Note 12), LM239J, LM239AJ, LM339J
See NS Package Number J14A
Order Number LM339AM, LM339AMX, LM339M, LM339MX or LM2901M
See NS Package Number M14A
Order Number LM339N, LM339AN, LM2901N or LM3302N
See NS Package Number N14A

00570627

Order Number LM139AW/883 or LM139W/883 (Note 11)
See NS Package Number W14B,
LM139AWGRQMLV (Note 13)
See NS Package Number WG14A

Note 11: Available per JM38510/11201

Note 12: Available per SMD# 5962-8873901

Note 13: See STD Mil Dwg 5962R96738 for Radiation Tolerant Device

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J) Order Number LM139J, LM139J/883, LM139AJ, LM139AJ/883, LM239J, LM239AJ, LM339J **NS Package Number J14A**

S.O. Package (M) Order Number LM339AM, LM339AMX, LM339M, LM339MX, LM2901M or LM2901MX **NS Package Number M14A**