©national semiconductor

LM2574/LM2574HV

SIMPLE SWITCHER ${ }^{\text {TM }}$ 0.5A Step-Down Voltage Regulator

General Description

The LM2574 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2574 series offers a high-efficiency replacement for popular three-terminal linear regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors optimized for use with the LM2574 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.23 V to 37 V (57V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 0.5 A output current
- Wide input voltage range, 40 V , up to 60 V for HV version
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical Application (Fixed Output Voltage Versions)

Note: Pin numbers are for 8 -pin DIP package.

Absolute Maximum Ratings (Note 1)	Lead Temperature	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
	Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
	Power Dissipation	Internally Limited
Maximum Supply Voltage	Operating Ratings	
LM2574 45V	Operating Ratings	
LM2574HV 63V	Temperature Range	
$\overline{\mathrm{ON}} /$ OFF Pin Input Voltage $\quad-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\text {IN }}$	LM2574/LM2574HV	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
Output Voltage to Ground	Supply Voltage	
(Steady State) -1V	LM2574	40 V
Minimum ESD Rating	LM2574HV	60 V
$(\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$		
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		

LM2574-3.3, LM2574HV-3.3

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2574-3.3 LM2574HV-3.3		Units (Limits)
			Typ	Limit	

SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	3.3		V
				3.234	 $\mathrm{V}(\mathrm{Min})$ $\mathrm{V}(\mathrm{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	3.3		V
	LM2574			$3.168 / 3.135$	$\mathrm{~V}(\mathrm{Min})$
				$3.432 / 3.465$	$\mathrm{~V}(\mathrm{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	3.3		
	LM2574HV			$3.168 / 3.135$	$\mathrm{~V}(\mathrm{Min})$
			72		$\mathrm{~V}(\mathrm{Max})$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	$\%$		

LM2574-5.0, LM2574HV-5.0

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { LM2574-5.0 } \\ \text { LM2574HV-5.0 } \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	$\begin{aligned} & \hline \text { Limit } \\ & \text { (Note 2) } \end{aligned}$	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	5	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	5	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \\ & \hline \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574HV	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	5	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	77		\%

LM2574-ADJ, LM2574HV-ADJ
 Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-ADJ } \\ \text { LM2574HV-ADJ } \end{gathered}$		Units(Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
V_{FB}	Feedback Voltage LM2574	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$ $\mathrm{V}_{\text {Out }}$ Programmed for 5V. Circuit of Figure 2	1.230	$\begin{aligned} & 1.193 / \mathbf{1 . 1 8 0} \\ & 1.267 / 1.280 \\ & \hline \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \\ \hline \end{gathered}$
V_{FB}	Feedback Voltage LM2574HV	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$ $\mathrm{V}_{\text {Out }}$ Programmed for 5 V . Circuit of Figure 2	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	77		\%

All Output Voltage Versions
 \section*{Electrical Characteristics}

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-XX } \\ \text { LM2574HV-XX } \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	Adjustable Version Only, $\mathrm{V}_{\text {Out }}=5 \mathrm{~V}$	50	100/500	nA
f_{0}	Oscillator Frequency	(see Note 10)	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \hline \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\operatorname{Max}) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {Out }}=0.5 \mathrm{~A}($ Note 4)	0.9	1.2/1.4	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(\mathrm{Min}) \end{gathered}$
I_{CL}	Current Limit	Peak Current, (Notes 4, 10)	1.0	$\begin{gathered} 0.7 / 0.65 \\ 1.6 / 1.8 \end{gathered}$	A $A(\operatorname{Min})$ $A(\operatorname{Max})$
I_{L}	Output Leakage Current	(Notes 6, 7) Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \\ \hline \end{gathered}$
I_{Q}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {StBY }}$	Standby Quiescent Current	$\overline{\text { ON }} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	50	200	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{Max})$
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \end{aligned}$	Thermal Resistance	N Package, Junction to Ambient (Note 8) N Package, Junction to Ambient (Note 9) M Package, Junction to Ambient (Note 8) M Package, Junction to Ambient (Note 9)	$\begin{gathered} 92 \\ 72 \\ 102 \\ 78 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

All Output Voltage Versions Electrical Characteristics (Continued)

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{I N}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\text {IN }}=30 \mathrm{~V}$ for the 15 V version. $I_{\text {LOAD }}=100 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-XX } \\ \text { LM2574HV-XX } \end{gathered}$		Units(Limits)
			Typ	Limit (Note 2)	
$\overline{\text { ON }}$ /OFF CONTROL Test Circuit Figure 2					
V_{IH}	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	V(Min)
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {Out }}=$ Nominal Output Voltage	1.2	1.0/0.8	V(Max)
I_{H}	$\overline{\mathrm{ON}} /$ OFF Pin Input Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	12	30	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{Max})$
IIL		$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics
Note 2: All limits guaranteed at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output pin
Note 5: Feedback pin removed from output and connected to 0 V .
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.

Note 7: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60 V for high voltage version)
Note 8: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See application hints in this data sheet and the thermal model in Switchers Made Simple software
Note 9: Junction to ambient thermal resistance with approximately 4 square inches of 1 oz . (0.0014 in . thick) printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. (See Note 8 .)
Note 10: The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics (Circuit of Figure 2)

Normalized Output Voltage

Dropout Voltage

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Wide Surface Mount (WM)
Order Number LM2574M-3.3, LM2574HVM-3.3, LM2574M-5.0,
LM2574HVM-5.0, LM2574M-12, LM2574HVM-12, LM2574M-15, LM2574HVM-15, LM2574M-ADJ or LM2574HVM-ADJ

NS Package Number M14B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president and general COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
