4/8 Channel Fault-Protected Analog Multiplexers

ADG508F/ADG509F/ADG528F*

FEATURES

Low On Resistance (300 Ω typ)
Fast Switching Times
$t_{0 N} 250$ ns max
$t_{\text {OFF }} 250$ ns max
Low Power Dissipation (3.3 mW max)
Fault and Overvoltage Protection (-40 V to +55 V)
All Switches OFF with Power Supply OFF
Analog Output of ON Channel Clamped Within Power Supplies If an Overvoltage Occurs
Latch-Up Proof Construction
Break Before Make Construction
TTL and CMOS Compatible Inputs
APPLICATIONS
Existing Multiplexer Applications (Both Fault-Protected and Nonfault-Protected)
New Designs Requiring Multiplexer Functions

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG508F, ADG509F and ADG528F are CMOS analog multiplexers, the ADG508F and ADG528F comprising eight single channels and the ADG509F comprising four differential channels. These multiplexers provide fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs from -40 V to +55 V . During fault conditions, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer.
The ADG508F and ADG528F switch one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG509F switches one of four differential inputs to a common differential output as determined by the 2bit binary address lines A0 and A1. The ADG528F has on-chip address and control latches that facilitate microprocessor interfacing. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched OFF.

PRODUCT HIGHLIGHTS

1. Fault Protection.

The ADG508F/ADG509F/ADG528F can withstand continuous voltage inputs from -40 V to +55 V . When a fault occurs due to the power supplies being turned off, all the channels are turned off and only a leakage current of a few nanoamperes flows.
*Patent Pending.

REV. C

[^0]2. ON channel turns off while fault exists.
3. Low R_{ON}.
4. Fast Switching Times.
5. Break-Before-Make Switching.

Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
6. Trench Isolation Eliminates Latch-up.

A dielectric trench separates the p and n-channel MOSFETs thereby preventing latch-up.

ORDERING GUIDE

Model 1	Temperature Range	Package Option
ADG508FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG508FBRN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~N}$
ADG508FBRW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~W}$
ADG508FTQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG509FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG509FBRN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~N}$
ADG509FBRW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~W}$
ADG509FTQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG528FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-18$
ADG528FBP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG528FTQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-18$

NOTES

${ }^{1}$ To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.
${ }^{2} \mathrm{~N}=$ Plastic DIP; $\mathrm{P}=$ Plastic Leaded Chip Carrier (PLCC); $\mathrm{Q}=$ Cerdip; RN $=0.15^{\prime \prime}$ Small Outline IC (SOIC), $\mathrm{RW}=0.3^{\prime \prime}$ Small Outline IC (SOIC).

ADG508F/ADG509F/ADG528F-SPECIFICATIONS ${ }^{1}$

Dual Supply (Vion $=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$\begin{array}{r} \mathrm{B} \\ +25^{\circ} \mathrm{C} \\ \hline \end{array}$	Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{array}{r} \mathrm{TV} \\ +25^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \text { ersion } \\ & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R_{ON} R_{ON} Drift $\mathrm{R}_{\text {ON }}$ Match	$\begin{aligned} & 300 \\ & \\ & 0.6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+3 \\ & \mathrm{~V}_{\mathrm{DD}}-1.5 \\ & 350 \\ & \\ & 400 \end{aligned}$	$\begin{aligned} & 300 \\ & \\ & 0.6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+3 \\ & \mathrm{~V}_{\mathrm{DD}}-1.5 \\ & 400 \\ & \\ & 450 \end{aligned}$	V min V max Ω typ Ω max $\% /{ }^{\circ} \mathrm{C}$ typ $\%$ max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \% \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) ADG508F/ADG528F ADG509F Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ ADG508F/ADG528F ADG509F	$\begin{aligned} & \pm 0.02 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 60 \\ & \pm 30 \\ & \pm 60 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 0.02 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 200 \\ & \pm 100 \\ & \pm 200 \\ & \pm 100 \end{aligned}$	nA typ nA max nA typ nA max $n A \max$ nA typ nA max nA max	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} ;$ Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} ;$ Test Circuit 4
FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies OFF)	$\begin{aligned} & \pm 0.02 \\ & \pm 2 \\ & \pm 0.005 \\ & \pm 2 \\ & \pm 0.001 \\ & \pm 2 \end{aligned}$	± 2	$\begin{aligned} & \pm 0.02 \\ & \pm 2 \\ & \pm 0.005 \\ & \pm 2 \\ & \pm 0.001 \\ & \pm 2 \end{aligned}$		nA typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 33 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \text { Test Circuit } 3 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{EN}}=\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2=0 \mathrm{~V} \\ & \text { Test Circuit } 6 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	5	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 1 \end{gathered}$	5	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 1 \end{gathered}$	V min V max $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{2}$ $\mathrm{t}_{\text {TRANSITION }}$ topen $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}, \overline{\mathrm{WR}})$ $\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN}, \overline{\mathrm{RS}})$ $\mathrm{t}_{\text {SETT }}$, Settling Time 0.1\% 0.01\% ADG528F Only t_{W}, Write Pulsewidth t_{S}, Address, Enable Setup Time t_{H}, Address, Enable Hold Time $t_{\text {RS }}$, Reset Pulsewidth Charge Injection OFF Isolation C_{S} (OFF) C_{D} (OFF) ADG508F/ADG528F ADG509F	200 300 50 25 200 250 200 250 100 4 68 50 5 50 25	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \\ & 1 \\ & 2.5 \\ & \\ & 120 \\ & 100 \\ & 10 \\ & 100 \end{aligned}$	200 300 50 25 200 250 200 250 100 4 68 50 5 50 25	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \\ & 1 \\ & 2.5 \\ & \\ & 200 \\ & 100 \\ & 10 \\ & 100 \end{aligned}$	ns typ ns max ns typ ns min ns typ ns max ns typ ns max us typ $\mu \mathrm{s}$ typ ns min ns min ns min ns min pC typ dB typ dB min pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=\mp 10 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \mathrm{Test}^{\text {Circuit }} 8 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Test Circuit }^{2} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Test Circuit } 9 \\ & \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} \end{aligned}$ $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 12 $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; $\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V} \mathrm{rms}$; Test Circuit 13
POWER REQUIREMENTS I_{DD} I_{SS}	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	mA max mA max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V

NOTES
${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG508F/ADG509F/ADG528F

Table I. ADG508F Truth Table

A2	A1	A0	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Table II. ADG509F Truth Table

A1	A0	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Table III. ADG528F Truth Table

$\mathbf{A 2}$	$\mathbf{A 1}$	$\mathbf{A 0}$	$\mathbf{E N}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	$\mathbf{O N}$ $\mathbf{S W I T C H}$
X	X	X	X	5	1	Retains Previous Switch Condition
X	X	X	X	X	0	NONE (Address and Enable Latches Cleared)
X	X	X	0	0	1	NONE
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8
$\mathbf{X}=$ Don't Care						

TIMING DIAGRAMS (ADG528F)

Figure 1.
Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.

Figure 2.
Figure 2 shows the Reset Pulsewidth, t_{RS}, and the Reset Turnoff Time, $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{RS}})$.
Note: All digital input signals rise and fall times are measured from 10% to 90% of $3 \mathrm{~V} . \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

ADG508F/ADG509F/ADG528F

ABSOLUTE MAXIMUM RATINGS*
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max) 40 mA Operating Temperature Range

Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
Cerdip Package

18-Lead $73^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $+300^{\circ} \mathrm{C}$
Plastic Package
θ_{JA}, Thermal Impedance
16-Lead . $117^{\circ} \mathrm{C}$
18-Lead . $110^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$
SOIC Package
θ_{JA}, Thermal Impedance
Narrow Body
$77^{\circ} \mathrm{C} / \mathrm{W}$
Wide Body . $75^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
PLCC Package
θ_{JA}, Thermal Impedance . $90^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering

Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ADG528F PIN CONFIGURATIONS

 DIPPLCC

NC = NO CONNECT

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

V_{DD}	Most positive power supply potential.
$\mathrm{V}_{\text {SS }}$	Most negative power supply potential.
GND	Ground (0 V) reference.
R_{ON}	Ohmic resistance between D and S.
R_{ON} Drift	Change in R_{ON} when temperature changes by one degree Celsius.
$\mathrm{R}_{\text {ON }}$ Match	Difference between the R_{ON} of any two channels.
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$	Source leakage current when the switch is off.
I_{D} (OFF)	Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {S }}(\mathrm{ON})$	Channel leakage current when the switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S .
$\mathrm{C}_{S}(\mathrm{OFF})$	Channel input capacitance for "OFF" condition.
C_{D} (OFF)	Channel output capacitance for "OFF" condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" switch capacitance.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$	Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
$\mathrm{t}_{\text {OFF }}(\mathrm{EN})$	Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.
${ }^{\text {transition }}$	Delay time between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
topen	"OFF" time measured between 80% points of both switches when switching from one address state to another.
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for Logic "0".
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for Logic " 1 ".
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
Off Isolation	A measure of unwanted signal coupling through an "OFF" channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
I_{DD}	Positive supply current.
$\mathrm{I}_{\text {SS }}$	Negative supply current.

Typical Performance Graphs

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$

Figure 4. Input Leakage Current as a Function of V_{S} (Power Supplies OFF) During Overvoltage Conditions

Figure 5. Output Leakage Current as a Function of V_{S} (Power Supplies ON) During Overvoltage Conditions

ADG508F/ADG509F/ADG528F

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 7. Input Leakage Current as a Function of V_{S} (Power Supplies ON) During Overvoltage Conditions

Figure 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 9. Leakage Currents as a Function of Temperature

Figure 10. Switching Time vs. Power Supply

Figure 11. Switching Time vs. Temperature

THEORY OF OPERATION

The ADG508F/ADG509F/ADG528F multiplexers are capable of withstanding overvoltages from -40 V to +55 V , irrespective of whether the power supplies are present or not. Each channel of the multiplexer consists of an n-channel MOSFET, a pchannel MOSFET and an n-channel MOSFET, connected in series. When the analog input exceeds the power supplies, one of the MOSFETs will switch off, limiting the current to submicroamp levels, thereby preventing the overvoltage from damaging any circuitry following the multiplexer. Figure 12 illustrates the channel architecture that enables these multiplexers to withstand continuous overvoltages.
When an analog input of $\mathrm{V}_{S S}+3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$ is applied to the ADG508F/ADG509F/ADG528F, the multiplexer behaves as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 400Ω maximum. However, when an overvoltage is applied to the device, one of the three MOSFETs will turn off.
Figures 12 to 15 show the conditions of the three MOSFETs for the various overvoltage situations. When the analog input applied to an ON channel approaches the positive power supply line, the n-channel MOSFET turns OFF since the voltage on the analog input exceeds the difference between $V_{D D}$ and the

Figure 12. +55 V Overvoltage Input to the ON Channel

Figure 13. -40 V Overvoltage on an OFF Channel with Multiplexer Power ON
n -channel threshold voltage $\left(\mathrm{V}_{\mathrm{TN}}\right)$. When a voltage more negative than $V_{S S}$ is applied to the multiplexer, the p-channel MOSFET will turn off since the analog input is more negative than the difference between $\mathrm{V}_{S S}$ and the p-channel threshold voltage $\left(\mathrm{V}_{\mathrm{TP}}\right)$. Since V_{TN} is nominally 1.5 V and V_{TP} is typically 3 V , the analog input range to the multiplexer is limited to -12 V to +13.5 V when $\mathrm{a} \pm 15 \mathrm{~V}$ power supply is used.
When the power supplies are present but the channel is off, again either the p-channel MOSFET or one of the n-channel MOSFETs will turn off when an overvoltage occurs.
Finally, when the power supplies are off, the gate of each MOSFET will be at ground. A negative overvoltage switches on the first n-channel MOSFET but the bias produced by the overvoltage causes the p-channel MOSFET to remain turned off. With a positive overvoltage, the first MOSFET in the series will remain off since the gate to source voltage applied to this MOSFET is negative.
During fault conditions, the leakage current into and out of the ADG508F/ADG509F/ADG528F is limited to a few microamps. This protects the multiplexer and succeeding circuitry from over stresses as well as protecting the signal sources which drive the multiplexer. Also, the other channels of the multiplexer will be undisturbed by the overvoltage and will continue to operate normally.

Figure 14. +55 V Overvoltage with Power OFF

Figure 15. -40 V Overvoltage with Power OFF

ADG508F/ADG509F/ADG528F

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Is (OFF)

Test Circuit 3. I_{D} (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Input Leakage Current (with Overvoltage)

Test Circuit 6. Input Leakage Current (with Power Supplies OFF)

Test Circuit 7. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Test Circuit 8. Break-Before-Make Delay, $t_{\text {OPEN }}$

Test Circuit 9. Enable Delay, $t_{O N}(E N)$, $t_{\text {OFF }}$ (EN)

Test Circuit 10. Write Turn-On Time, $t_{O N}(\overline{W R})$

Test Circuit 11. Reset Turn-Off Time, $t_{\text {OFF }}(\overline{R S})$

Test Circuit 12. Charge Injection

Test Circuit 13. OFF Isolation

ADG508F/ADG509F/ADG528F

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

18-Lead Plastic (N-18)

20-Lead PLCC (P-20A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

