FEATURES

Low on resistance ($\mathbf{3 0 0} \Omega$ typical)
Fast switching times
ton 250 ns maximum
toff 250 ns maximum
Low power dissipation (3.3 mW maximum)
Fault and overvoltage protection (-40 V to +55 V)
All switches off with power supply off
Analog output of on channel clamped within power supplies if an overvoltage occurs
Latch-up proof construction
Break-before-make construction
TTL and CMOS compatible inputs

APPLICATIONS

Existing multiplexer applications (both fault-protected and nonfault-protected)
 New designs requiring multiplexer functions

GENERAL DESCRIPTION

The ADG508F, ADG509F, and ADG528F ${ }^{1}$ are CMOS analog multiplexers, with the ADG508F and ADG528F comprising eight single channels and the ADG509F comprising four differential channels. These multiplexers provide fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs from -40 V to +55 V . During fault conditions, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer.

The ADG508F and ADG528F switch one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG509F switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. The ADG528F has onchip address and control latches that facilitate microprocessor

interfacing. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched off.

PRODUCT HIGHLIGHTS

1. Fault Protection.

The ADG508F/ADG509F/ADG528F can withstand continuous voltage inputs from -40 V to +55 V . When a fault occurs due to the power supplies being turned off, all the channels are turned off and only a leakage current of a few nanoamperes flows.
2. On channel turns off while fault exists.
3. Low Ron.
4. Fast switching times.
5. Break-before-make switching. Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
6. Trench isolation eliminates latch-up. A dielectric trench separates the p and n -channel MOSFETs thereby preventing latch-up.

Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2001-2009 Analog Devices, Inc. All rights reserved.

ADG508F/ADG509F/ADG528F

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Truth Tables
Timing Diagrams 5
REVISION HISTORY
7/09—Rev. D: Rev. E
Updated Format Universal
Added TSSOP Universal
Updated Outline Dimensions 15
Changes to Ordering Guide 18
4/01—Data Sheet Changed from Rev. C to Rev. D.
Changes to Ordering Guide 1
Changes to Specifications Table 2
Max Ratings Changed 4
Deleted 16-Lead Cerdip from Outline Dimensions 11
Deleted 18-Lead Cerdip from Outline Dimensions 12
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Terminology 10
Theory of Operation 11
Test Circuits 12
Outline Dimensions 15
Ordering Guide 18

SPECIFICATIONS

DUAL SUPPLY

$V_{D D}=+15 \mathrm{~V} \pm 10 \%, V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Ron Drift Ron Match	$\begin{aligned} & 300 \\ & \\ & 0.6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{S S}+3 \\ & V_{D D}-1.5 \\ & 350 \\ & \\ & 400 \end{aligned}$	\vee min \vee max Ω typ Ω max \%/ ${ }^{\circ} \mathrm{C}$ typ \% max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \% \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) ADG508F/ADG528F ADG509F Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ ADG508F/ADG528F ADG509F	$\begin{aligned} & \pm 0.02 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 60 \\ & \pm 30 \\ & \\ & \pm 60 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$V_{D}= \pm 10 \mathrm{~V}, V_{S}=\mp 10 \mathrm{~V} ;$ See Figure 22 $V_{D}= \pm 10 V_{,} V_{S}=\mp 10 \mathrm{~V} ;$ See Figure 23 $V_{S}=V_{D}= \pm 10 \mathrm{~V} ;$ See Figure 24
FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies OFF)	$\begin{aligned} & \pm 0.02 \\ & \pm 2 \\ & \pm 0.005 \\ & \pm 2 \\ & \pm 0.001 \\ & \pm 2 \\ & \hline \end{aligned}$	± 2	nA typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 33 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {, see Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{EN}}=\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2=0 \mathrm{~V} \end{aligned}$ See Figure 26
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{InL}}$ or $\mathrm{l}_{\mathrm{INH}}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ ttransition topen ton (EN, $\overline{W R})$ toff (EN, $\overline{\mathrm{RS}}$) $\mathrm{t}_{\text {SETt, }}$ Settling Time 0.1% 0.01\% ADG528F Only t_{w}, Write Pulse Width ts, Address, Enable Setup Time t_{H}, Address, Enable Hold Time $t_{\text {RS }}$, Reset Pulse Width	$\begin{aligned} & 200 \\ & 300 \\ & 50 \\ & 25 \\ & 200 \\ & 250 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 10 \\ & 400 \\ & 400 \\ & 400 \\ & 1 \\ & 2.5 \\ & 120 \\ & 100 \\ & 10 \\ & 100 \end{aligned}$	ns typ ns max ns typ ns min ns typ ns max ns typ ns max $\mu \mathrm{s}$ typ $\mu \mathrm{s}$ typ ns min ns min ns min ns min	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} ; \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$

ADG508F/ADG509F/ADG528F

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Charge Injection	4		pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
OFF Isolation	68		dB typ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{CL}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$;
	50		dB min	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{Vrms}$; see Figure 33
C_{5} (OFF)	5		pF typ	
C_{D} (OFF)				
ADG508F/ADG528F	50		pF typ	
ADG509F	25		pF typ	
POWER REQUIREMENTS				
ldo	0.1	0.2	mA max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V
Iss	0.1	0.1	mA max	

${ }^{1}$ Guaranteed by design, not subject to production test.

TRUTH TABLES

Table 2. ADG508F Truth Table

A2	A1	A0	EN	ON Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	4
0	1	0	1	5
1	0	1	6	
1	0	0	1	7
1	1	1	8	

X = Don't Care
Table 3. ADG509F Truth Table

A1	AO	EN	ON Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

X = Don't Care

Table 4. ADG528F Truth Table

A2	A1	A0	EN	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	ON Switch
X	X	X	X	\mathbf{I}	1	Retains previous switch condition
X	X	X	X	X	0	None (address and enable latches cleared)
X	X	X	0	0	1	None
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

ADG508F/ADG509F/ADG528F

TIMING DIAGRAMS

Figure 2 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.

Figure 2. ADG528F Timing Sequence for Latching the Switch Address and Enable Inputs

Figure 3 shows the reset pulsewidth, $t_{R S}$, and the reset turnoff time, toff $(\overline{\mathrm{RS}})$. Note that all digital input signals rise and fall times are measured from 10% to 90% of $3 \mathrm{~V} . \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

Figure 3. ADG528F Reset Pulse Width

ADG508F/ADG509F/ADG528F

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 5.

Parameter	Rating
$V_{\text {DD }}$ to $V_{S S}$	44 V
$V_{\text {D }}$ to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Digital Input, EN, Ax	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , whichever occurs first
V_{s}, Analog Input Overvoltage with Power On	$\mathrm{V}_{S S}-25 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+40 \mathrm{~V}$
V_{s}, Analog Input Overvoltage with Power Off	-40 V to +55 V
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	40 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
$\theta_{\text {JA, }}$, Thermal Impedance	$112^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Package	
$\theta_{\mathrm{J} A}$, Thermal Impedance	
16-Lead	$117^{\circ} \mathrm{C} / \mathrm{W}$
18-Lead	$110^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
SOIC Package	
$\theta_{\mathrm{J} A}$, Thermal Impedance	
Narrow Body	$77^{\circ} \mathrm{C} / \mathrm{W}$
Wide Body	$75^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
PLCC Package	
$\theta_{\text {JA, }}$, Thermal Impedance	$90^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. ADG508F Pin Configuration TSSOP/DIP/SOIC

Figure 5. ADG509F Pin Configuration TSSOP/DIP/SOIC

Figure 6. ADG528F Pin Configuration DIP

Figure 7. ADG528F Pin Configuration PLCC

ADG508F/ADG509F/ADG528F

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$

Figure 9. Input Leakage Current as a Function of V_{s} (Power Supplies Off)
During Overvoltage Conditions

Figure 10. Output Leakage Current as a Function of Vs (Power Supplies On) During Overvoltage Conditions

Figure 11. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures

Figure 12. Input Leakage Current as a Function of V_{s} (Power Supplies On) During Overvoltage Conditions

Figure 13. Leakage Currents as a Function of $V_{D}\left(V_{s}\right)$

ADG508F/ADG509F/ADG528F

Figure 14. Leakage Currents as a Function of Temperature

Figure 15. Switching Time vs. Power Supply

Figure 16. Switching Time vs. Temperature

ADG508F/ADG509F/ADG528F

TERMINOLOGY

$V_{\text {DD }}$
Most Positive Power Supply Potential.
Vss
Most Negative Power Supply Potential.
GND
Ground (0 V) Reference.
Ron
Ohmic Resistance between D and S.

Ron Drift

Change in Ron when temperature changes by one degree Celsius.

Ron Match

Difference between the R_{ON} of any two channels.
Is (OFF)
Source leakage current when the switch is off.
ID (OFF)
Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$
Channel leakage current when the switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog Voltage on Terminals D, S.
C_{s} (OFF)
Channel input capacitance for off condition.
C_{D} (OFF)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
On Switch Capacitance.
C_{IN}
Digital Input Capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {Off }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition.

$t_{\text {transition }}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
topen
"OFF" time measured between 80% points of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.
IDD
Positive Supply Current.
Iss
Negative Supply Current.

ADG508F/ADG509F/ADG528F

THEORY OF OPERATION

The ADG508F/ADG509F/ADG528F multiplexers are capable of withstanding overvoltages from -40 V to +55 V , irrespective of whether the power supplies are present or not. Each channel of the multiplexer consists of an n-channel MOSFET, a p-channel MOSFET, and an n-channel MOSFET, connected in series. When the analog input exceeds the power supplies, one of the MOSFETs will switch off, limiting the current to submicroamp levels, thereby preventing the overvoltage from damaging any circuitry following the multiplexer. Figure 17 illustrates the channel architecture that enables these multiplexers to withstand continuous overvoltages.
When an analog input of $\mathrm{V}_{\text {SS }}+3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$ is applied to the ADG508F/ADG509F/ADG528F, the multiplexer behaves as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 400Ω maximum. However, when an overvoltage is applied to the device, one of the three MOSFETs will turn off.
Figure 17 to Figure 20 show the conditions of the three MOSFETs for the various overvoltage situations. When the analog input applied to an ON channel approaches the positive power supply line, the n-channel MOSFET turns OFF since the voltage on the analog input exceeds the difference between $V_{D D}$ and the n -channel threshold voltage (V_{TN}). When a voltage more negative than $V_{s s}$ is applied to the multiplexer, the p-channel MOSFET will turn off since the analog input is more negative than the difference between V_{ss} and the p -channel threshold voltage ($\mathrm{V}_{\text {TP }}$). Since $\mathrm{V}_{\text {TN }}$ is nominally 1.5 V and $\mathrm{V}_{\text {TP }}$ is typically 3 V , the analog input range to the multiplexer is limited to -12 V to +13.5 V when $\mathrm{a} \pm 15 \mathrm{~V}$ power supply is used.
When the power supplies are present but the channel is off, again either the p-channel MOSFET or one of the n-channel MOSFETs will turn off when an overvoltage occurs.
Finally, when the power supplies are off, the gate of each MOSFET will be at ground. A negative overvoltage switches on the first n-channel MOSFET but the bias produced by the overvoltage causes the p-channel MOSFET to remain turned off. With a positive overvoltage, the first MOSFET in the series will remain off since the gate to source voltage applied to this MOSFET is negative.

During fault conditions, the leakage current into and out of the ADG508F/ADG509F/ADG528F is limited to a few microamps. This protects the multiplexer and succeeding circuitry from over stresses as well as protecting the signal sources which drive the multiplexer. Also, the other channels of the multiplexer will be undisturbed by the overvoltage and will continue to operate normally.

Figure 17. +55 V Overvoltage Input to the On Channel

Figure 18. -40 V Overvoltage on an Off Channel with Multiplexer Power On

Figure 19. +55 V Overvoltage with Power Off

Figure 20. -40 V Overvoltage with Power Off

ADG508F/ADG509F/ADG528F

TEST CIRCUITS

Figure 21. On Resistance

Figure 22. Is (Off)

Figure 23. I_{D} (Off)

Figure 24. I_{D} (On)

Figure 25. Input Leakage Current (with Overvoltage)

Figure 26. Input Leakage Current (with Power Supplies Off)

*SIMILAR CONNECTION FOR ADG508F/ADG509F.

Figure 27. Switching Time of Multiplexer, $t_{\text {transition }}$

*SIMILAR CONNECTION FOR ADG508F/ADG509F.
Figure 28. Break-Before-Make Delay, topen

*SIMILAR CONNECTION FOR ADG508F/ADG509F.
Figure 29. Enable Delay, ton (EN), toff (EN)

Figure 30. Write Turn-On Time, $t_{o N}(\overline{W R})$

ADG508F/ADG509F/ADG528F

*SIMILAR CONNECTION FOR ADG508F/ADG509F.
Figure 31. Reset Turn-Off Time, toff $(\overline{R S})$

Figure 32. Charge Injection

*SIMILAR CONNECTION FOR ADG508F/ADG509F.
Figure 33. Off Isolation

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 34. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N -16)
Dimensions shown in inches and (millimeters)

Figure 35. 16-Lead Standard Small Outline Package [SOIC-N] Narrow Body (R-16)
Dimensions shown in millimeters and (inches)

ADG508F/ADG509F/ADG528F

Figure 36. 16-Lead Standard Small Outline Package [SOIC-W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

Figure 37. 18-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N -18)
Dimensions shown in inches and (millimeters)

Figure 38. 20-Lead Plastic Leaded Chip Carrier [PLCC]
(P-20)
Dimensions shown in inches and (millimeters)

Figure 39. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

ADG508F/ADG509F/ADG528F

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG508FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead PDIP	N-16
ADG508FBNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead PDIP	N -16
ADG508FBRN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG508FBRN-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG508FBRNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG508FBRNZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG508FBRW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG508FBRWZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG508FBRWZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG508FBRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead TSSOP	RU-16
ADG508FBRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead TSSOP	RU-16
ADG509FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead PDIP	N -16
ADG509FBNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead PDIP	N -16
ADG509FBRN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG509FBRN-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG509FBRNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG509FBRNZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	R-16
ADG509FBRW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG509FBRW-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG509FBRWZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG509FBRWZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG509FBRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead TSSOP	RU-16
ADG509FBRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead TSSOP	RU-16
ADG528FBN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18-Lead PDIP	N -18
ADG528FBNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18-Lead PDIP	$\mathrm{N}-18$
ADG528FBP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PLCC	P-20
ADG528FBP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PLCC	P-20
ADG528FBPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PLCC	P-20

NOTES

ADG508F/ADG509F/ADG528F

NOTES

