

Quad Matched 741-Type Operational Amplifiers

0P11

FEATURES

Guaranteed Vos: 500 μV maximum

Guaranteed matched CMRR: 94 dB minimum Guaranteed matched Vos: 750 μV maximum

LM148/LM348 direct replacement

Low noise

Silicon-nitride passivation Internal frequency compensation Low crossover distortion Continuous short-circuit protection

Low input bias current

GENERAL DESCRIPTION

The OP11 provides four matched 741-type operational amplifiers in a single 14-lead PDIP. The OP11 is pin compatible with the LM148, LM348, RM4156, RM4158, and HA4741 amplifiers. The amplifier is matched for common-mode rejection ratio and offset voltage, which is very important in designing instrumentation amplifiers. In addition, the amplifier is designed to have equal positive-going and negative-going slew rates, which is an important consideration for good audio system performance.

The OP11 is ideal for use in designs requiring minimum space and cost while maintaining performance.

PIN CONFIGURATION

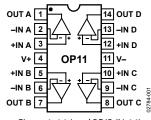


Figure 1. 14-Lead PDIP (N-14) (P Suffix)

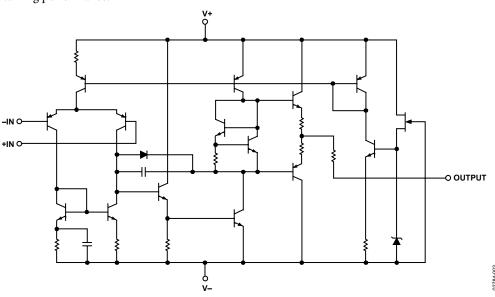


Figure 2. Simplified Schematic

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{S} = ±15 V, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage	Vos	$R_S \le 10 \text{ k}\Omega$		0.3	0.5	mV
Input Offset Current	los			5.5	20	nA
Input Bias Current	I _B			180	300	nA
Input Resistance Differential Mode ¹	R _{IN}		0.17	0.29		ΜΩ
Input Voltage Range	IVR		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V}, R_S \leq 10 \text{ k}\Omega$	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V, } R_S \leq 10 \text{ k}\Omega$		4	32	μV/V
Output Voltage Swing	Vo	$R_L = 2 k\Omega$	±11	±13		V
Large Signal Voltage Gain	Avo	$R_L \le 2 k\Omega$, $V_O = \pm 10 V$	100	650		V/mV
Power Consumption ²	P _d	$V_0 = 0 V$		105	180	mW
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		0.7		μV p-p
Input Noise Voltage Density	e _n	$f_0 = 10 \text{ Hz}$		18		nV/√Hz
		f _O = 100 Hz		14		nV/√Hz
		$f_0 = 1 \text{ kHz}$		12		nV/√Hz
Input Noise Current	I _n p-p	0.1 Hz to 10 Hz		17		рА р-р
Input Noise Current Density	I _n	$f_O = 10 \text{ Hz}$		1.8		pA/√Hz
		f ₀ = 100 Hz		1.5		pA/√Hz
		$f_0 = 1 \text{ kHz}$		1.2		pA/√Hz
Channel Separation	CS		100	130		dB
Slew Rate ³	SR		0.7	1.0		V/µs
Large Signal Bandwidth ³		$V_0 = 20 \text{ V p-p}$	11	16		kHz
Closed-Loop Bandwidth⁴	BW	$A_{VCL} = 1$	2.4	3.0		MHz
Rise Time ³	t _f	$A_V = 1, V_{IN} = 50 \text{ mV}$		110	145	ns
Overshoot ³	OS			15	25	%

¹ Guaranteed by input bias current. ² Total dissipation for all four amplifiers in package. ³ Sample tested.

⁴ Guaranteed by rise time.

OP11

 $V_S = \pm 15 \text{ V}, 0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage	Vos	$R_S \le 10 \text{ k}\Omega$		0.4	0.8	mV
Average Input Offset Voltage Drift ¹	TCVos	$R_S \le 10 \text{ k}\Omega$		2.0	10	μV/°C
Input Offset Current	los			14	30	nA
Average Input Offset Current Drift ¹	TClos			0.1	0.3	nA/°C
Input Bias Current	I _B			200	350	nA
Input Voltage Range	IVR		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V, } R_S \leq 10 \text{ k}\Omega$	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V, } R_S \leq 10 \text{ k}\Omega$		4	32	μV/V
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	50	250		V/mV
Output Voltage Swing	Vo	$R_L \ge 2 \ k\Omega$	±11	±13		V
Power Consumption ²	P_d	$V_O = 0 V$		115	200	mW

MATCHING CHARACTERISTICS

 $V_{\text{S}}=\pm 15$ V, $T_{\text{A}}=25^{\circ}\text{C},\,R_{\text{S}}\leq 100~\Omega,$ unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			0.5	0.75	mV
Common-Mode Rejection	ΔCMRR	$V_{CM} = \pm 12 V$		1	20	μV/V
Ratio Match		$V_{CM} = \pm 12 V$	94	120		dB

 $V_S = \pm 15 \text{ V}, 0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}, R_S \le 100 \Omega$, unless otherwise noted.

Table 4.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			0.6	1.0	mV
Common-Mode Rejection	ΔCMRR	$V_{CM} = \pm 12 V$		3.2	20	μV/V
Ratio Match		$V_{CM} = \pm 12 V$	94	110		dB

¹ Guaranteed but not tested. ² Total dissipation for all four amplifiers in package.

ABSOLUTE MAXIMUM RATINGS

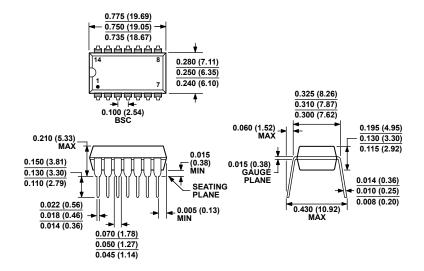
Table 5.

Parameter	Rating
Supply Voltage (V ₅)	±22 V
Differential Input Voltage	±30 V
Input Voltage	Supply Voltage
Output Short-Circuit Duration	Continuous (One Amp Only)
Storage Temperature Range	−65°C to +125°C
Lead Temperature (Soldering, 60 sec)	300°C
Operating Temperature Range	0°C to 70°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 6. Thermal Resistance

Package Type	θ_{JA}^1	θ,ς	Unit
14-Lead PDIP (N-14)	83	39	°C/W


 $^{^1}$ θ_{JA} is specified for worst-case conditions, that is, θ_{JA} is specified for device in socket for PDIP.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 21. 14-Lead Plastic Dual In-Line Package [PDIP]
(N-14)
[P Suffix]
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP11EP	0°C to 70°C	14-Lead Plastic Dual In-Line Package (PDIP)	N-14 (P-Suffix)
OP11EPZ ¹	0°C to 70°C	14-Lead Plastic Dual In-Line Package (PDIP)	N-14 (P-Suffix)

 $^{^{1}}$ Z = RoHS Compliant Part.

For military processed devices, refer to the Standard Microcircuit Drawing (SMD) available at

SMD Part Number	Analog Devices, Inc. Equivalent
5962-89801012A	OP11ARCMDA
5962-8980101CA	OP11AYMDA