

LMC662 CMOS Dual Operational Amplifier General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from +5V to +15V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS} , drift, and broadband noise as well as voltage gain into realistic loads (2 k Ω and 600 Ω) are all equal to or better than widely accepted bipolar equivalents.

This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

8-Pin DIP/SO

ОИТРИТ В

INVERTING INPUT B

NON-INVERTING

00976301

INPUT B

Features

- Rail-to-rail output swing
- Specified for 2 kΩ and 600Ω loads
- High voltage gain: 126 dB
- Low input offset voltage: 3 mV
- Low offset voltage drift: 1.3 µV/°C
- Ultra low input bias current: 2 fA
- Input common-mode range includes V⁻
- Operating range from +5V to +15V supply
- $I_{SS} = 400 \,\mu$ A/amplifier; independent of V+
- Low distortion: 0.01% at 10 kHz
- Slew rate: 1.1 V/µs

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Typical Application

Low-Leakage Sample-and-Hold

00976315

Ordering Information

Connection Diagram

OUTPUT A

INVERTING INPUT A

NON-INVERTING

INPUT A

v.

Package	Temperature Range		NSC	Transport	
	Industrial	Commercial	Drawing	Media	
8-Pin	LMC662AIM	LMC662CM	M08A	Rail	
Small Outline	LMC662AIMX	LMC662CMX		Tape and Reel	
8-Pin	LMC662AIN	LMC662CN	N08E	Rail	
Molded DIP					

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage	±Supply Voltage
Supply Voltage (V ⁺ - V ⁻)	16V
Output Short Circuit to V ⁺	(Note 12)
Output Short Circuit to V ⁻	(Note 1)
Lead Temperature	
(Soldering, 10 sec.)	260°C
Storage Temp. Range	−65°C to +150°C
Voltage at Input/Output Pins	(V ⁺) +0.3V, (V ⁻) -0.3V
Current at Output Pin	±18 mA
Current at Input Pin	±5 mA
Current at Power Supply Pin	35 mA

Power Dissipation	(Note 2)
Junction Temperature	150°C
ESD Tolerance (Note 8)	1000V

Operating Ratings(Note 3)

Temperature Range	
LMC662AI	$-40^{\circ}C \leq T_{J} \leq +85^{\circ}C$
LMC662C	$0^{\circ}C \le T_{J} \le +70^{\circ}C$
Supply Voltage Range	4.75V to 15.5V
Power Dissipation	(Note 10)
Thermal Resistance (θ_{JA}) (Note 11)	
8-Pin Molded DIP	101°C/W
8-Pin SO	165°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.

Parameter	Conditions	Typ	LMC662AI	LMC662C	Units
			Limit	Limit	
			(Note 4)	(Note 4)	
Input Offset Voltage		1	(11016 4)	6	m\/
input onset voltage			3.3	6.3	max
Input Offset Voltage		1.3			uV/°C
Average Drift		_			
Input Bias Current		0.002			рА
·			4	2	max
Input Offset Current		0.001			рА
			2	1	max
Input Resistance		>1			TeraΩ
Common Mode	$0V \le V_{CM} \le 12.0V$	83	70	63	dB
Rejection Ratio	V ⁺ = 15V		68	62	min
Positive Power Supply	$5V \le V^+ \le 15V$	83	70	63	dB
Rejection Ratio	$V_{O} = 2.5V$		68	62	min
Negative Power Supply	$0V \le V^- \le -10V$	94	84	74	dB
Rejection Ratio			83	73	min
Input Common-Mode	V ⁺ = 5V & 15V	-0.4	-0.1	-0.1	V
Voltage Range	For CMRR \ge 50 dB		0	0	max
		V ⁺ - 1.9	V ⁺ – 2.3	V ⁺ – 2.3	V
			V ⁺ – 2.5	V ⁺ – 2.4	min
Large Signal	$R_L = 2 k\Omega$ (Note 5)	2000	440	300	V/mV
Voltage Gain	Sourcing		400	200	min
	Sinking	500	180	90	V/mV
			120	80	min
	$R_L = 600\Omega$ (Note 5)	1000	220	150	V/mV
	Sourcing		200	100	min
	Sinking	250	100	50	V/mV
			60	40	min

Parameter	Conditions	Typ (Note 4)	LMC662AI	LMC662C Limit (Note 4)	Units
			Limit (Note 4)		
Output Swing	V ⁺ = 5V	4.87	4.82	4.78	V
	$R_L = 2 k\Omega$ to V ⁺ /2		4.79	4.76	min
		0.10	0.15	0.19	V
			0.17	0.21	max
	V ⁺ = 5V	4.61	4.41	4.27	V
	$R_L = 600\Omega$ to V ⁺ /2		4.31	4.21	min
		0.30	0.50	0.63	V
			0.56	0.69	max
	V ⁺ = 15V	14.63	14.50	14.37	V
	$R_L = 2 k\Omega$ to V ⁺ /2		14.44	14.32	min
		0.26	0.35	0.44	V
			0.40	0.48	max
	V ⁺ = 15V	13.90	13.35	12.92	V
	$R_L = 600\Omega$ to V ⁺ /2		13.15	12.76	min
		0.79	1.16	1.45	V
			1.32	1.58	max
Output Current	Sourcing, $V_O = 0V$	22	16	13	mA
$V^{+} = 5V$			14	11	min
	Sinking, $V_{O} = 5V$	21	16	13	mA
			14	11	min
Output Current	Sourcing, $V_O = 0V$	40	28	23	mA
V ⁺ = 15V			25	21	min
	Sinking, $V_O = 13V$	39	28	23	mA
	(Note 12)		24	20	min
Supply Current	Both Amplifiers	0.75	1.3	1.6	mA
	$V_{O} = 1.5V$		1.5	1.8	max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC662AI	LMC662C	Units
			Limit	Limit	
			(Note 4)	(Note 4)	
Slew Rate	(Note 6)	1.1	0.8	0.8	V/µs
			0.6	0.7	min
Gain-Bandwidth Product		1.4			MHz
Phase Margin		50			Deg
Gain Margin		17			dB
Amp-to-Amp Isolation	(Note 7)	130			dB
Input-Referred Voltage Noise	F = 1 kHz	22			nV/√Hz
Input-Referred Current Noise	F = 1 kHz	0.0002			pA/√Hz
	•		*	•	

LMC662

LMC662

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}$ C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC662AI	LMC662C	Units
			Limit	Limit	
			(Note 4)	(Note 4)	
Total Harmonic Distortion	$\label{eq:result} \begin{split} F &= 10 \text{ kHz}, A_{V} = -10 \\ R_{L} &= 2 \text{ k}\Omega, V_{O} = 8 \text{ V}_{PP} \\ V^{+} &= 15 V \end{split}$	0.01			%

Note 1: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability. **Note 2:** The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.

Note 5: $V^+ = 15V$, $V_{CM} = 7.5V$ and R_L connected to 7.5V. For Sourcing tests, 7.5V $\leq V_O \leq 11.5V$. For Sinking tests, 2.5V $\leq V_O \leq 7.5V$.

Note 6: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.

Note 7: Input referred. V⁺ = 15V and R_L = 10 kΩ connected to V⁺/2. Each amp excited in turn with 1 kHz to produce V₀ = 13 V_{PP}.

Note 8: Human body model, 1.5 k Ω in series with 100 pF.

Note 9: A military RETS electrical test specification is available on request.

Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

Note 11: All numbers apply for packages soldered directly into a PC board.

Note 12: Do not connect output to V^+ when V^+ is greater than 13V or reliability may be adversely affected.

LMC662