Panasonic ideas for life

FEATURES

1. Compact flat body saves space With a small footprint of $10.6 \mathrm{~mm}(\mathrm{~L}) \times$ $7.2 \mathrm{~mm}(\mathrm{~W}) .417$ inch (L) $\times .283$ inch (W) for space savings, it also has a very short height of 5.2 mm .205 inch. (Standard PC board type.)
2. Outstanding surge resistance.

Surge breakdown voltage between contacts and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
Surge breakdown voltage between open contacts:
1,500 V $10 \times 160 \mu \mathrm{~s}$ (FCC part 68)
3. The use of twin crossbar contacts ensures high contact reliability.
AgPd contact is used because of its good sulfide resistance. Adopting low-gas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.
4. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted closetogether are minimized. This all means a packaging density higher than ever before.

RoHS Directive compatibility information http://www.mew.co.jp/ac/e/environment/
5. Nominal operating power: 140 mW
6. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$ Destructive shock resistance: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm. 130 inch)

Destructive vibration resistance:
10 to 55 Hz (at double amplitude of 5 mm . 197 inch)
7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Telephone switchboard
2. Telecommunications equipment
3. Measurement equipment
4. Consumer electronic and audio visual equipment

ORDERING INFORMATION

TYPES

1. Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching
	Part No.	Part No.
1.5 V DC	AGQ2001H	AGQ2101H
3 V DC	AGQ20003	AGQ21003
4.5 V DC	AGQ2004H	AGQ2104H
6 V DC	AGQ20006	AGQ21006
9 V DC	AGQ20009	AGQ21009
12V DC	AGQ20012	AGQ21012
24V DC	AGQ20024	AGQ21024

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
2. Surface-mount terminal

1) Tube packing

Nominal coil voltage	Single side stable	1 coil latching
	Part No.	Part No.
1.5 V DC	AGQ200 $\square 1 \mathrm{H}$	AGQ210 $\square 1 \mathrm{H}$
3V DC	AGQ200 $\square 03$	AGQ210 $\square 03$
4.5 V DC	AGQ200 $\square 4 \mathrm{H}$	AGQ210 $\square 4 \mathrm{H}$
6 V DC	AGQ200 $\square 06$	AGQ210 $\square 06$
9 V DC	AGQ200 $\square 09$	AGQ210 $\square 09$
12V DC	AGQ200 $\square 12$	AGQ210 $\square 12$
24V DC	AGQ200 $\square 24$	AGQ210 $\square 24$

$\square:$ For each surface-mounted terminal identification, input the following letter. A type: \underline{A}, S type: \underline{S}
Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
2) Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching
	Part No.	Part No.
1.5 V DC	AGQ200 $\square 1 \mathrm{HZ}$	AGQ210 $\square 1 \mathrm{HZ}$
3V DC	AGQ200 $\square 03 Z$	AGQ210 $\square 03 Z$
4.5 V DC	AGQ200 $\square 4 \mathrm{HZ}$	AGQ210 $\square 4 \mathrm{HZ}$
6 V DC	AGQ200 $\square 062$	AGQ210 $\square 06 Z$
9 V DC	AGQ200 $\square 09 \mathrm{Z}$	AGQ210 $\square 09 Z$
12V DC	AGQ200 $\square 12 Z$	AGQ210 $\square 12 Z$
24V DC	AGQ200 $\square 24 Z$	AGQ210 $\square 24 Z$

\square : For each surface-mounted terminal identification, input the following letter. A type: \mathbf{A}, S type: \underline{S}
Standard packing: Tape and reel: 900 pcs.; Case: 1,800 pcs.
Notes: 1 . Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3 / 4$-pin side) is also available. 2. Please inquire if you require a relay, between 1.5 and 24 V DC, with a voltage not listed.

RATING

1. Coil data
1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			9.6 mA	2,504 Ω	230 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24 V DC			5.0 mA	4,800 ${ }^{\text {a }}$	120 mW	

*Pulse drive (JIS C 5442-1996)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity (resistive load)		1 A 30 V DC, 0.3 A 125 V AC
	Max. switching power (resistive load)		30 W (DC), $37.5 \mathrm{~V} \mathrm{~A} \mathrm{(AC)}$
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		1 coil latching	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10 $\mathrm{\mu s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1 g .035 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

REFERENCE DATA

1. Max. switching capacity

2. Electrical life (1A 30V DC resistive load)

Tested sample: AGQ200A4H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

2. Life curve

3. Mechanical life

Tested sample: AGQ200A4H, 6 pcs. Operating speed: 180 cpm

5. Coil temperature rise

Tested sample: AGQ200A4H, AGQ200A24, 6 pcs.
Point measured: Inside the coil
Ambient temperature: Room temperature

2. Surface-mount terminal

Type	External dimensions				Suggested mounting pad (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable and 1 coil latching				Single side stable and 1 coil latching	
A type	Max. 5.40	10.60 ± 0.3 $217 \pm .012$	$\begin{array}{r} 7 \\ 0.20 \pm 0.1 \\ \hline .008 \pm .004 \\ \hline \end{array}$	$\begin{array}{\|c} 5.08 \pm 0.15 \\ .200 \pm .006 \\ \hline-8.40 \pm 0.3 \\ .331 \pm .012 \end{array}$		$1 \begin{aligned} & 6.74 \\ & .265 \end{aligned}$
S type	Max. 5.40			$\begin{aligned} & 0.20 \pm 0.1 \\ & 008 \pm .004 \\ & \hline 5.08 \pm 0.15 \\ & .200 \pm .006 \end{aligned}$		$\begin{array}{r} 6.14 \\ .242 \\ \hline \end{array}$

Schematic (Top view)

Single side stable

(Deenergized condition)

1 coil latcing

(Reset condition)

