Dual Picoampere Input Current Bipolar Op Amp

FEATURES

High DC Precision
$100 \mu \mathrm{~V}$ Max Offset Voltage
$1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Offset Drift
200 pA Max Input Bias Current
$0.5 \mu \mathrm{~V}$ p-p Voltage Noise, 0.1 Hz to 10 Hz
$750 \mu \mathrm{~A}$ Supply Current
Available in 8-Lead Plastic Mini-DIP
and Surface-Mount (SOIC) Packages
Available in Tape and Reel in Accordance with
EIA-481A Standard
Quad Version: AD704

APPLICATIONS

Low Frequency Active Filters
Precision Instrumentation
Precision Integrators

CONNECTION DIAGRAM

Plastic Mini-DIP (N) and
Plastic SOIC (R) Packages

GENERAL DESCRIPTION

The AD706 is a dual, low power, bipolar op amp that has the low input bias current of a JFET amplifier, but which offers a significantly lower I_{B} drift over temperature. It utilizes superbeta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its I_{B} typically only increases by $5 \times$ at $125^{\circ} \mathrm{C}$ (unlike a JFET amp, for which I_{B} doubles every $10^{\circ} \mathrm{C}$ for a $1000 \times$ increase at $125^{\circ} \mathrm{C}$). The AD706 also achieves the microvolt offset voltage and low noise characteristics of a precision bipolar input amplifier.

Since it has $<200 \mathrm{pA}$ of bias current, the AD706 does not require the commonly used "balancing" resistor. Furthermore, the current noise is only $50 \mathrm{fA} / \sqrt{\mathrm{Hz}}$, which makes this amplifier usable with very high source impedances. At $600 \mu \mathrm{~A}$ max supply current (per amplifier), the AD706 is well suited for today's high density boards.
The AD706 is an excellent choice for use in low frequency active filters in 12-bit and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD706 is internally compensated for unity gain and is available in five performance grades. The AD706J is rated over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD 706 A is rated for the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

The AD706 is offered in two varieties of an 8-lead package: plastic mini-DIP and surface-mount (SOIC).

PRODUCT HIGHLIGHTS

1. The AD706 is a dual low drift op amp that offers JFET level input bias currents, yet has the low I_{B} drift of a bipolar amplifier. It may be used in circuits using dual op amps such as the LT1024.
2. The AD706 provides both low drift and high dc precision.
3. The AD706 can be used in applications where a chopper amplifier would normally be required but without the chopper's inherent noise.

Figure 1. Input Bias Current vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

| Parameter | Conditions | $\begin{array}{c}\text { AD706/A } \\ \text { Typ }\end{array}$ | | | Max |
| :--- | :--- | :--- | :--- | :--- | :--- |$]$ Unit

		AD706J/A		
Parameter	Conditions	Min	Typ	Max
POWER SUPPLY				
Rated Performance		± 2.0	± 15	
Operating Range			0.75	1.2
Quiescent Current, Total		0.8	1.4	V
	$\mathrm{~T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		mA	
TRANSISTOR COUNT	Number of Transistors		90	

NOTES

${ }^{1}$ Bias current specifications are guaranteed maximum at either input.
${ }^{2}$ Input bias current match is the difference between corresponding inputs (I_{B} of - IN of Amplifier 1 minus I_{B} of -IN of Amplifier 2).
CMRR match is the difference between $\frac{\Delta V_{O S 1}}{\Delta V_{C M}}$ for Amplifier 1 and $\frac{\Delta V_{O S 2}}{\Delta V_{C M}}$ for Amplifier 2, expressed in dB .
PSRR match is the difference between $\frac{\Delta V_{O S 1}}{\Delta V_{S U P P L Y}}$ for Amplifier 1 and $\frac{\Delta V_{O S 2}}{\Delta V_{S U P P L Y}}$ for Amplifier 2, expressed in dB.

All min and max specifications are guaranteed.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$	
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation	
(Total: Both Amplifiers) ${ }^{2}$	650 mW
Input Voltage	$\ldots \pm \mathrm{V}_{\text {S }}$
Differential Input Voltage ${ }^{3}$	$+0.7 \mathrm{~V}$
Output Short Circuit Duration	Indefinite
Storage Temperature Range (N, R)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
AD706J	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD706A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 secs)	$300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Specification is for device in free air: 8-Lead Plastic Package: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$ 8 -Lead Small Outline Package: $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{3}$ The input pins of this amplifier are protected by back-to-back diodes. If the differential voltage exceeds $\pm 0.7 \mathrm{~V}$, external series protection resistors should be added to limit the input current to less than 25 mA .

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
AD706JN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-8$
AD706JR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SOIC	$\mathrm{R}-8$
AD706JR-REEL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-8$
AD706JR-REEL7	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-8$
AD706AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	$\mathrm{R}-8$
AD706AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-8$
AD706AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-8$
AD706ARZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-8$
${ }^{*}$ Lead-free part.			

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm). Contact factory for latest dimensions.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD706 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC]
 (R-8)
 Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Plastic Dual-in-Line Package [PDIP]

($\mathrm{N}-8$)
Dimensions shown in inches and (millimeters)

