## FEATURES

## Rail-to-rail output swing

Single-supply operation: 3 V to 36 V
Low offset voltage: $\mathbf{3 0 0} \mu \mathrm{V}$
Gain bandwidth product: 75 kHz
High open-loop gain: $\mathbf{1 0 0 0}$ V/mV
Unity-gain stable
Low supply current/per amplifier: $\mathbf{1 5 0} \boldsymbol{\mu} \mathrm{A}$ maximum

## APPLICATIONS

## Battery-operated instrumentation

Servo amplifiers
Actuator drives
Sensor conditioners
Power supply control

## GENERAL DESCRIPTION

Rail-to-rail output swing combined with dc accuracy are the key features of the OP495 quad and OP295 dual CBCMOS operational amplifiers. By using a bipolar front end, lower noise and higher accuracy than those of CMOS designs have been achieved. Both input and output ranges include the negative supply, providing the user with zero-in/zero-out capability. For users of 3.3 V systems such as lithium batteries, the OP295/OP495 are specified for 3 V operation.
Maximum offset voltage is specified at $300 \mu \mathrm{~V}$ for 5 V operation, and the open-loop gain is a minimum of $1000 \mathrm{~V} / \mathrm{mV}$. This yields performance that can be used to implement high accuracy systems, even in single-supply designs.
The ability to swing rail-to-rail and supply 15 mA to the load makes the OP295/OP495 ideal drivers for power transistors and $H$ bridges. This allows designs to achieve higher efficiencies and to transfer more power to the load than previously possible without the use of discrete components.
For applications such as transformers that require driving inductive loads, increases in efficiency are also possible. Stability while driving capacitive loads is another benefit of this design over CMOS rail-to-rail amplifiers. This is useful for driving coax cable or large FET transistors. The OP295/OP495 are stable with loads in excess of 300 pF .

## PIN CONFIGURATIONS



Figure 3. 14-Lead PDIP PSuffix ( $\mathrm{N}-14$ )


Figure 4. 16-Lead SOIC_W S Suffix (RW-16)

The OP295 and OP495 are specified over the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range. The OP295 is available in 8-lead PDIP and 8-lead SOIC_N surface-mount packages. The OP495 is available in 14-lead PDIP and 16-lead SOIC_W surface-mount packages.

## SPECIFICATIONS

## ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| Offset Voltage | Vos |  |  | 100 | 500 | $\mu \mathrm{V}$ |
| Input Bias Current | $I_{B}$ |  |  | 8 | 20 | nA |
| Input Offset Current | los |  |  | $\pm 1$ | $\pm 3$ | nA |
| Input Voltage Range | Vcm |  | 0 |  | 2.0 | V |
| Common-Mode Rejection Ration | CMRR | $0 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 2.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 90 | 110 |  | dB |
| Large Signal Voltage Gain | Avo | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ |  | 750 |  | V/mV |
| Offset Voltage Drift | $\Delta \mathrm{Vos} / \Delta \mathrm{T}$ |  |  | 1 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

## OP295/0P495

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT CHARACTERISTICS Output Voltage Swing High Output Voltage Swing Low | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{aligned}$ | 2.9 | 0.7 | 2 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$ |
| POWER SUPPLY <br> Power Supply Rejection Ratio <br> Supply Current per Amplifier | PSRR <br> ISY | $\begin{aligned} & \pm 1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V} \\ & \pm 1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {out }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 90 \\ & 85 \end{aligned}$ | $110$ | $150$ | dB <br> dB <br> $\mu \mathrm{A}$ |
| DYNAMIC PERFORMANCE <br> Slew Rate <br> Gain Bandwidth Product Phase Margin | $\begin{aligned} & \text { SR } \\ & \text { GBP } \\ & \theta_{\circ} \\ & \hline \end{aligned}$ | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ |  | $\begin{aligned} & 0.03 \\ & 75 \\ & 85 \\ & \hline \end{aligned}$ |  | V/ $\mu \mathrm{s}$ <br> kHz <br> Degrees |
| NOISE PERFORMANCE <br> Voltage Noise Voltage Noise Density Current Noise Density | $\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} \end{aligned}$ | $\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{aligned} & 1.6 \\ & 53 \\ & <0.1 \end{aligned}$ |  | $\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ |

$\mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS <br> Offset Voltage <br> Input Bias Current <br> Input Offset Current <br> Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift | Vos <br> $\mathrm{I}_{\mathrm{B}}$ <br> los <br> $V_{\text {cm }}$ <br> CMRR <br> Avo <br> $\Delta \mathrm{V}_{\mathrm{os}} / \Delta \mathrm{T}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \\ & -15.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+13.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$ | $\begin{aligned} & -15 \\ & 90 \\ & 1000 \end{aligned}$ | $\begin{aligned} & 300 \\ & 7 \\ & \pm 1 \\ & \\ & 110 \\ & 4000 \\ & 1 \end{aligned}$ | $\begin{aligned} & 500 \\ & 800 \\ & 20 \\ & 30 \\ & \pm 3 \\ & \pm 5 \\ & +13.5 \end{aligned}$ | $\mu \mathrm{V}$ <br> $\mu \mathrm{V}$ <br> nA <br> nA <br> nA <br> nA <br> V <br> dB <br> $\mathrm{V} / \mathrm{mV}$ <br> $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| OUTPUT CHARACTERISTICS Output Voltage Swing High Output Voltage Swing Low Output Current | Voн <br> Vol <br> Iout | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{aligned}$ | $\begin{gathered} 14.95 \\ 14.80 \\ \\ \pm 15 \\ \hline \end{gathered}$ | +25 | $\begin{aligned} & -14.95 \\ & -14.85 \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \hline \end{array}$ |
| POWER SUPPLY <br> Power Supply Rejection Ratio <br> Supply Current per Amplifier Supply Voltage Range | PSRR <br> $\mathrm{I}_{\mathrm{SY}}$ <br> Vs | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 90 \\ & 85 \\ & 3( \pm 1.5) \end{aligned}$ | $110$ | $\begin{aligned} & 175 \\ & 36( \pm 18) \end{aligned}$ | dB <br> dB <br> $\mu \mathrm{A}$ <br> V |
| DYNAMIC PERFORMANCE <br> Slew Rate <br> Gain Bandwidth Product <br> Phase Margin | $\begin{aligned} & \text { SR } \\ & \text { GBP } \\ & \theta_{\circ} \\ & \hline \end{aligned}$ | $\mathrm{RL}=10 \mathrm{k} \Omega$ |  | $\begin{aligned} & 0.03 \\ & 85 \\ & 83 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{kHz} \\ & \text { Degrees } \end{aligned}$ |
| NOISE PERFORMANCE <br> Voltage Noise Voltage Noise Density Current Noise Density | $\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} \end{aligned}$ | $\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{aligned} & 1.25 \\ & 45 \\ & <0.1 \end{aligned}$ |  | $\mu \mathrm{V}$ p-p <br> $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ <br> $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ |

## ABSOLUTE MAXIMUM RATINGS

Table 4.

| Parameter $^{1}$ | Rating |
| :--- | :--- |
| Supply Voltage | $\pm 18 \mathrm{~V}$ |
| Input Voltage | $\pm 18 \mathrm{~V}$ |
| Differential Input Voltage ${ }^{2}$ | 36 V |
| Output Short-Circuit Duration | Indefinite |
| Storage Temperature Range |  |
| $\quad$ P, S Packages | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range |  |
| $\quad$ OP295G, OP495G | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Junction Temperature Range |  |
| $\quad$ P, S Packages | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 60 sec ) | $300^{\circ} \mathrm{C}$ |

${ }^{1}$ Absolute maximum ratings apply to packaged parts, unless otherwise noted.
${ }^{2}$ For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL RESISTANCE

$\theta_{\mathrm{JA}}$ is specified for worst case mounting conditions; that is, $\theta_{\mathrm{JA}}$ is specified for device in socket for PDIP; $\theta_{J A}$ is specified for device soldered to printed circuit board for SOIC package.

Table 5. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\mathbf{J A}}$ | $\boldsymbol{\theta}_{\mathbf{\prime}}$ | Unit |
| :--- | :--- | :--- | :--- |
| 8-Lead PDIP (N-8) | 103 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-Lead SOIC_N (R-8) | 158 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 14-Lead PDIP (N-14) | 83 | 39 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 16-Lead SOIC_W (RW-16) | 98 | 30 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-001-BA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 8-Lead Plastic Dual In-Line Package [PDIP] ( $N$-8) P Suffix
Dimensions shown in inches and (millimeters)


Figure 35. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) S Suffix
Dimensions shown in millimeters and (inches)

## OP295/0P495

ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option |
| :---: | :---: | :---: | :---: |
| OP295GP | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead PDIP | P-Suffix (N-8) |
| OP295GPZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead PDIP | P-Suffix (N-8) |
| OP295GS | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP295GS-REEL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP295GS-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP295GSZ1 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP295GSZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP295GSZ-REEL71 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | S-Suffix (R-8) |
| OP495GP | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead PDIP | P-Suffix (N-14) |
| OP495GPZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead PDIP | P-Suffix ( $\mathrm{N}-14$ ) |
| OP495GS | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead SOIC_W | S-Suffix (RW-16) |
| OP495GS-REEL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead SOIC_W | S-Suffix (RW-16) |
| OP495GSZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead SOIC_W | S-Suffix (RW-16) |
| OP495GSZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead SOIC_W | S-Suffix (RW-16) |

[^0]
[^0]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

