

LM148/LM248/LM348 Quad 741 Op Amps **General Description**

The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling.

The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required. For lower power refer to LF444.

Schematic Diagram

- 741 op amp operating characteristics
- Class AB output stage-no crossover distortion
- Pin compatible with the LM124
- Overload protection for inputs and outputs
- 0.6 mA/Amplifier Low supply current drain:
- Low input offset voltage: 1 mV 4 nA
- Low input offset current:
- 30 nA Low input bias current 120 dB
- High degree of isolation between amplifiers:
- Gain bandwidth product
- LM148 (unity gain): 1.0 MHz

* 1 pF in the LM149

Absolute Maximum Ratings (Note 4)

Distributors for availability and specifications.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/

	LM148	LM148 LM248						
Supply Voltage	±22V	±18V	±18V					
Differential Input Voltage	$\pm 44V$	±36V	±36V					
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous					
Power Dissipation (P _d at 25°C) and								
Thermal Resistance (θ_{jA}), (Note 2)								
Molded DIP (N) P _d	—	—	750 mW					
θ_{jA}	—	—	100°C/W					
Cavity DIP (J) P _d	1100 mW	800 mW	700 mW					
θ_{JA}	110°C/W	110°C/W	110°C/W					
Maximum Junction Temperature (T _{jMAX})	150°C	110°C	100°C					
Operating Temperature Range	$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	$-25^{\circ}C \leq T_A \leq +85^{\circ}C$	$0^{\circ}C \leq T_A \leq +70^{\circ}C$					
Storage Temperature Range	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C					
Lead Temperature (Soldering, 10 sec.) Ceramic	300°C	300°C	300°C					
Lead Temperature (Soldering, 10 sec.) Plastic			260°C					
Soldering Information								
Dual-In-Line Package								
Soldering (10 seconds)	260°C	260°C	260°C					
Small Outline Package								
Vapor Phase (60 seconds)	215°C	215°C	215°C					
Infrared (15 seconds)	220°C	220°C	220°C					
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface								
mount								
devices.								
ESD tolerance (Note 5)	500V	500V	500V					

Electrical Characteristics

(Note 3)

Parameter	Conditions	LM148		LM248		LM348			Units		
		Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		4	25		4	50		4	50	nA
Input Bias Current	$T_A = 25^{\circ}C$		30	100		30	200		30	200	nA
Input Resistance	$T_A = 25^{\circ}C$	0.8	2.5		0.8	2.5		0.8	2.5		MΩ
Supply Current All Amplifiers	$T_{A} = 25^{\circ}C, V_{S} = \pm 15V$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$T_{A} = 25^{\circ}C, V_{S} = \pm 15V$	50	160		25	160		25	160		V/mV
	$V_{OUT} = \pm 10V, R_L \ge 2 \ k\Omega$										
Amplifier to Amplifier	$T_A = 25^{\circ}C$, f = 1 Hz to 20 kHz										
Coupling	(Input Referred) See Crosstalk		-120			-120			-120		dB
	Test Circuit										
Small Signal Bandwidth	$T_A = 25^{\circ}C,$		1.0			1.0			1.0		MHz
	LM148 Series										
Phase Margin	$T_A = 25^{\circ}C,$		60			60			60		degrees
	LM148 Series ($A_V = 1$)										
Slew Rate	$T_A = 25^{\circ}C,$		0.5			0.5			0.5		V/µs
	LM148 Series ($A_V = 1$)										
Output Short Circuit Current	$T_A = 25^{\circ}C$		25			25			25		mA
Input Offset Voltage	$R_{S} \le 10 \ k\Omega$			6.0			7.5			7.5	mV
Input Offset Current				75			125			100	nA

Electrical Characteristics (Continued)

(Note 3)											
Parameter	Conditions	LM148			LM248			LM348			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Bias Current				325			500			400	nA
Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{OUT} = \pm 10V,$	25			15			15			V/mV
	$R_L > 2 k\Omega$										
Output Voltage Swing	$V_{\rm S} = \pm 15 V, R_{\rm L} = 10 \ \text{k}\Omega$	±12	±13		±12	±13		±12	±13		V
	$R_L = 2 k\Omega$	±10	±12		±10	±12		±10	±12		V
Input Voltage Range	$V_{\rm S} = \pm 15 V$	±12			±12			±12			V
Common-Mode Rejection	$R_{S} \le 10 \text{ k}\Omega$	70	90		70	90		70	90		dB
Ratio											
Supply Voltage Rejection	$R_S \le 10 \text{ k}\Omega, \pm 5V \le V_S \le \pm 15V$	77	96		77	96		77	96		dB

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{JMAX} - T_A)/\theta_{JA}$ or the 25°C P_{DMAX} , whichever is less.

Note 3: These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range $(T_L \le T_A \le T_H)$ unless otherwise noted.

Note 4: Refer to RETS 148X for LM148 military specifications.

Note 5: Human body model, 1.5 k Ω in series with 100 pF.

Cross Talk Test Circuit $V_s = \pm 15V$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N) Order Number LM348N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.