PD-95331

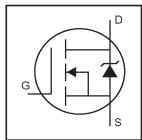
International Rectifier

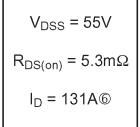
AUTOMOTIVE MOSFET

IRF1405SPbF IRF1405LPbF

Typical Applications

- Electric Power Steering (EPS)
- Anti-lock Braking System (ABS)
- Wiper Control
- Climate Control
- Power Door
- Lead-Free


Benefits


- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

D²Pak IRF1405S

TO-262 IRF1405L

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	131©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	93©	A
I _{DM}	Pulsed Drain Current ⊕	680	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②	590	mJ
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	A
E _{AR}	Repetitive Avalanche Energy⑦		mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

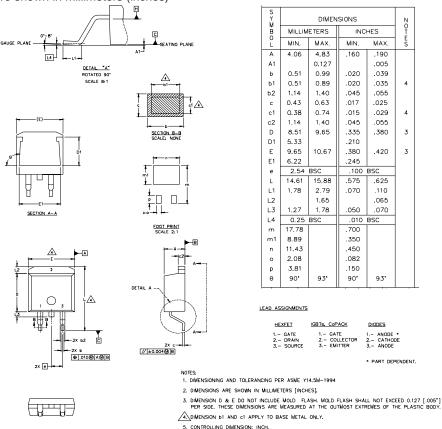
	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		40	

IRF1405S/LPbF

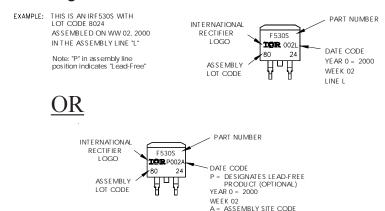
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55	_		V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.057	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.6	5.3	mΩ	V _{GS} = 10V, I _D = 101A ④
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = 10V, I_{D} = 250\mu A$
g _{fs}	Forward Transconductance	69	_		S	V _{DS} = 25V, I _D = 110A
I _{DSS}	Drain-to-Source Leakage Current		_	20	μА	$V_{DS} = 55V$, $V_{GS} = 0V$
			_	250	1	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150$ °C
I _{GSS}	Gate-to-Source Forward Leakage		_	200	nA .	$V_{GS} = 20V$
1655	Gate-to-Source Reverse Leakage			-200	117 \	$V_{GS} = -20V$
Qg	Total Gate Charge		170	260		I _D = 101A
Q _{gs}	Gate-to-Source Charge		44	66	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		62	93		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 38V$
t _r	Rise Time		190	_	ns	I _D = 110A
t _{d(off)}	Turn-Off Delay Time		130		1115	$R_G = 1.1\Omega$
t _f	Fall Time		110	_		V _{GS} = 10V ④
L _D	Internal Drain Inductance	_	4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		hH	from package and center of die contact
C _{iss}	Input Capacitance		5480			V _{GS} = 0V
Coss	Output Capacitance		1210		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		280			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance	_	5210	_]	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance	_	900] [$V_{GS} = 0V$, $V_{DS} = 44V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance ®		1500			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			424@		MOSFET symbol	
	(Body Diode)		- 131©	A	showing the		
I _{SM}	Pulsed Source Current			000	600] ^`	integral reverse ⊸Ų ├┴┴/
	(Body Diode) ①		<u> </u>	680	p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 101A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		88	130	ns	$T_J = 25^{\circ}C$, $I_F = 101A$	
Q _{rr}	Reverse RecoveryCharge		250	380	nC	di/dt = 100A/µs ④	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

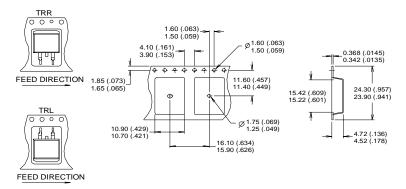
International

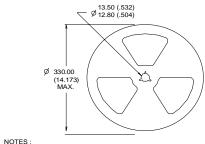

IRF1405S/LPbF

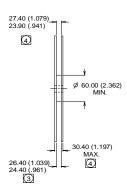
IOR Rectifier D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information




International


IRF1405S/LPbF

TOR Rectifier D2Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

- COMFORMS TO EIA-418.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_1 = 25$ °C, L = 0.11mH $R_G = 25\Omega$, $I_{AS} = 101A$. (See Figure 12).
- $\ensuremath{ \Im \ } I_{SD} \leq 101A, \ di/dt \leq 210A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \le 175^{\circ}C$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- © Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ® This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

