PD - 95473



**SMPS MOSFET** 

# IRFB260NPbF

HEXFET<sup>®</sup> Power MOSFET

#### **Applications**

- High frequency DC-DC converters
- Lead-Free

| <b>V</b> <sub>DSS</sub> | R <sub>DS(on)</sub> max | Ι <sub>D</sub> |
|-------------------------|-------------------------|----------------|
| 200V                    | <b>0.040</b> Ω          | 56A            |

## **Benefits**

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C<sub>OSS</sub> to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current



#### **Absolute Maximum Ratings**

|                                         | Parameter                                       | Max.                   | Units |
|-----------------------------------------|-------------------------------------------------|------------------------|-------|
| I <sub>D</sub> @ T <sub>C</sub> = 25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V | 56                     |       |
| I <sub>D</sub> @ T <sub>C</sub> = 100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 40                     | 7 A   |
| I <sub>DM</sub>                         | Pulsed Drain Current ①                          | 220                    | 7     |
| $P_{D} @ T_{C} = 25^{\circ}C$           | Power Dissipation                               | 380                    | W     |
|                                         | Linear Derating Factor                          | 2.5                    | W/°C  |
| V <sub>GS</sub>                         | Gate-to-Source Voltage                          | ± 20                   | V     |
| dv/dt                                   | Peak Diode Recovery dv/dt 3                     | 10                     | V/ns  |
| TJ                                      | Operating Junction and                          | -55 to + 175           |       |
| T <sub>STG</sub>                        | Storage Temperature Range                       |                        | °C    |
|                                         | Soldering Temperature, for 10 seconds           | 300 (1.6mm from case ) |       |
|                                         | Mounting torqe, 6-32 or M3 screw                | 10 lbf•in (1.1N•m)     | 7     |

## **Thermal Resistance**

|                  | Parameter                           | Тур. | Max. | Units |
|------------------|-------------------------------------|------|------|-------|
| R <sub>0JC</sub> | Junction-to-Case                    |      | 0.40 |       |
| R <sub>0CS</sub> | Case-to-Sink, Flat, Greased Surface | 0.50 |      | °C/W  |
| $R_{\theta JA}$  | Junction-to-Ambient                 |      | 62   |       |

Notes ① through ⑤ are on page 8

# IRFB260NPbF

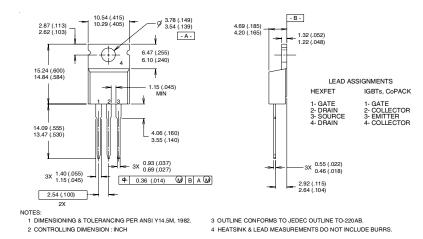
# Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                   | Parameter                            | Min. | Тур. | Max.  | Units | Conditions                                       |
|-----------------------------------|--------------------------------------|------|------|-------|-------|--------------------------------------------------|
| V <sub>(BR)DSS</sub>              | Drain-to-Source Breakdown Voltage    | 200  |      |       | V     | $V_{GS} = 0V, I_D = 250 \mu A$                   |
| $\Delta V_{(BR)DSS} / \Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.26 |       | V/°C  | Reference to $25^{\circ}$ C, $I_{D} = 1$ mA      |
| R <sub>DS(on)</sub>               | Static Drain-to-Source On-Resistance |      |      | 0.040 | Ω     | $V_{GS} = 10V, I_D = 34A$ ④                      |
| V <sub>GS(th)</sub>               | Gate Threshold Voltage               | 2.0  |      | 4.0   | V     | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$            |
| IDSS                              | Drain-to-Source Leakage Current      |      |      | 25    | μA    | $V_{DS} = 200 V, V_{GS} = 0 V$                   |
| USS                               |                                      |      |      | 250   |       | $V_{DS} = 160V, V_{GS} = 0V, T_J = 150^{\circ}C$ |
| 1                                 | Gate-to-Source Forward Leakage       |      |      | 100   | nA    | $V_{GS} = 20V$                                   |
| IGSS                              | Gate-to-Source Reverse Leakage       |      |      | -100  |       | V <sub>GS</sub> = -20V                           |

# Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

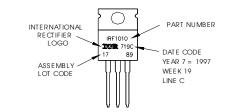
|                       | Parameter                       | Min. | Тур. | Max. | Units | Conditions                                           |
|-----------------------|---------------------------------|------|------|------|-------|------------------------------------------------------|
| 9fs                   | Forward Transconductance        | 29   |      |      | S     | V <sub>DS</sub> = 50V, I <sub>D</sub> = 34A          |
| Qg                    | Total Gate Charge               |      | 150  | 220  |       | I <sub>D</sub> = 34A                                 |
| Q <sub>gs</sub>       | Gate-to-Source Charge           |      | 24   | 37   | nC    | V <sub>DS</sub> = 160V                               |
| Q <sub>gd</sub>       | Gate-to-Drain ("Miller") Charge |      | 67   | 100  |       | V <sub>GS</sub> = 10V ④                              |
| t <sub>d(on)</sub>    | Turn-On Delay Time              |      | 17   |      |       | V <sub>DD</sub> = 100V                               |
| tr                    | Rise Time                       |      | 64   |      | ns    | I <sub>D</sub> = 34A                                 |
| t <sub>d(off)</sub>   | Turn-Off Delay Time             |      | 52   |      |       | R <sub>G</sub> = 1.8Ω                                |
| t <sub>f</sub>        | Fall Time                       |      | 50   |      |       | V <sub>GS</sub> = 10V ④                              |
| Ciss                  | Input Capacitance               |      | 4220 |      |       | $V_{GS} = 0V$                                        |
| Coss                  | Output Capacitance              |      | 580  |      |       | $V_{DS} = 25V$                                       |
| C <sub>rss</sub>      | Reverse Transfer Capacitance    |      | 140  |      | рF    | f = 1.0 MHz                                          |
| Coss                  | Output Capacitance              |      | 5080 |      |       | $V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$             |
| Coss                  | Output Capacitance              |      | 230  |      |       | $V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$             |
| C <sub>oss</sub> eff. | Effective Output Capacitance    |      | 500  |      |       | $V_{GS}$ = 0V, $V_{DS}$ = 0V to 160V $\ensuremath{}$ |

### **Avalanche Characteristics**


|                 | Parameter                                  | Тур. | Max. | Units |
|-----------------|--------------------------------------------|------|------|-------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy <sup>®</sup> |      | 450  | mJ    |
| I <sub>AR</sub> | Avalanche Current <sup>®</sup>             |      | 34   | A     |
| E <sub>AR</sub> | Repetitive Avalanche Energy <sup>①</sup>   |      | 38   | mJ    |

#### **Diode Characteristics**

|                 | Parameter                 | Min.                                                                          | Тур.  | Max. | Units               | Conditions                                              |
|-----------------|---------------------------|-------------------------------------------------------------------------------|-------|------|---------------------|---------------------------------------------------------|
| Is              | Continuous Source Current |                                                                               |       | 56   |                     | MOSFET symbol                                           |
|                 | (Body Diode)              |                                                                               |       | 50   | A                   | showing the                                             |
| I <sub>SM</sub> | Pulsed Source Current     |                                                                               |       |      | 1 ^                 | integral reverse GL                                     |
|                 | (Body Diode) ①            |                                                                               | . 220 |      | p-n junction diode. |                                                         |
| V <sub>SD</sub> | Diode Forward Voltage     |                                                                               |       | 1.3  | V                   | $T_J=25^\circ C,\ I_S=34A,\ V_{GS}=0V  \textcircled{9}$ |
| t <sub>rr</sub> | Reverse Recovery Time     |                                                                               | 240   | 360  | ns                  | $T_{J} = 25^{\circ}C, I_{F} = 34A$                      |
| Q <sub>rr</sub> | Reverse RecoveryCharge    |                                                                               | 2.1   | 3.2  | μC                  | di/dt = 100A/µs   ④                                     |
| t <sub>on</sub> | Forward Turn-On Time      | Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$ ) |       |      |                     |                                                         |


# IRFB260NPbF

# **TO-220AB** Package Outline



# **TO-220AB Part Marking Information**

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead-Free"



#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 3 I\_{SD}  $\leq$  34, di/dt  $\leq$  480A/µs, V\_{DD}  $\leq$  V\_{(BR)DSS}, T\_J  $\leq$  175°C
- ④ Pulse width  $\leq$  300µs; duty cycle  $\leq$  2%.
- $\$  C<sub>oss</sub> eff. is a fixed capacitance that gives the same charging time as C<sub>oss</sub> while V<sub>DS</sub> is rising from 0 to 80% V<sub>DSS</sub>

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

