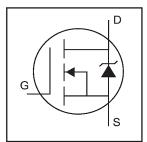
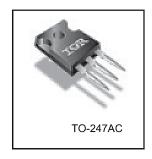
International Rectifier

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Optimized for SMPS Applications
- Lead-Free


Description


Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

IRFP064VPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	130⑦		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	95	A	
I _{DM}	Pulsed Drain Current ①	520		
P _D @T _C = 25°C	Power Dissipation	250	W	
	Linear Derating Factor	1.7	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	130	Α	
E _{AR}	Repetitive Avalanche Energy①	25	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	4.7	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case	_	0.60	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.24	_	°C/W
R _{θJA}	Junction-to-Ambient	_	40	

IRFP064VPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

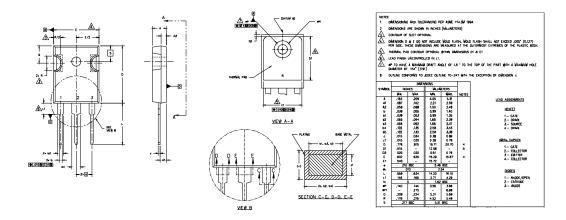
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.067		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			5.5	mΩ	V _{GS} = 10V, I _D = 78A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	88			S	V _{DS} = 25V, I _D = 78A④
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 60V$, $V_{GS} = 0V$
פפטי	Brain to Godroe Edanage Guirent			250	μΛ	$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			260		I _D = 130A
Q _{gs}	Gate-to-Source Charge			68	nC	$V_{DS} = 48V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			94		V_{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		26			$V_{DD} = 30V$
t _r	Rise Time		200		ns	$I_{D} = 130A$
t _{d(off)}	Turn-Off Delay Time		100		115	$R_G = 4.3\Omega$
t _f	Fall Time		150			V_{GS} = 10V, See Fig. 10 $\textcircled{4}$
1	Internal Drain Inductance		5.0			Between lead,
L _D	Internal Drain Inductance		5.0		nH	6mm (0.25in.)
L _S	Internal Source Inductance		13		11111	from package
						and center of die contact
C _{iss}	Input Capacitance		6760	_		$V_{GS} = 0V$
Coss	Output Capacitance		1330			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		290		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy ²		1880 ଓ	310⑥	mJ	I _{AS} = 130A, L = 37μH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		130 ^⑦		MOSFET symbol	
	(Body Diode)			Α	showing the	
I _{SM}	Pulsed Source Current			520	, ,	integral reverse
	(Body Diode)①				520	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 130$ A, $V_{GS} = 0$ V ④
t _{rr}	Reverse Recovery Time		94	140	ns	$T_J = 25$ °C, $I_F = 130$ A
Q _{rr}	Reverse Recovery Charge		360	540	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}\text{C}$, $L = 260 \mu\text{H}$ $R_G = 25 \Omega$, $I_{AS} = 50 \text{A}$. (See Figure 12)
- $\label{eq:loss} \begin{array}{l} \mbox{(3)} \ I_{SD} \leq 130 \mbox{A, di/dt} \leq 230 \mbox{A/}\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ \mbox{T}_{J} \leq 175 \mbox{°C} \end{array}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- 6 This is a calculated value limited to $T_J = 175^{\circ}C$.
- ② Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A.

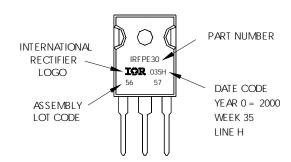

IRFP064VPbF

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR's Web site.

International
Rectifier