LF398 - Monolithic Sample and Hold Circuit

Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than 10μ s acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth
- Space qualified, JM38510

Parametric Table
\qquad

Temperature Min	$0 \operatorname{deg} \mathrm{C}$

Temperature Max	$70 \operatorname{deg} \mathrm{C}$

Offset Voltage max, 25C $3,10 \mathrm{mV}$

Datasheet

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits (Japanese)

Package Availability, Models, Samples \& Pricing

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as $6 \mu s$ to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10{ }^{10} \mathrm{Ohm}$ allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Reliability Metrics

Part Number	Process	EFR Reject	EFR Sample Size	PPM *	LTA Rejects	LTA Device Hours	FITS	MTTF (Hours)
LF398 MDC	BIFET	0	12335	0	0	975000	4	276658912
LF398 MWC	BIFET	0	12335	0	0	975000	4	276658912
LF398AH	BIFET	0	12335	0	0	975000	4	276658912
LF398AN	BIFET	0	12335	0	0	975000	4	276658912
LF398H	BIFET	0	12335	0	0	975000	4	276658912
LF398M	BIFET	0	12335	0	0	975000	4	276658912
LF398MX	BIFET	0	12335	0	0	975000	4	276658912
LF398N	BIFET	0	12335	0	0	975000	4	276658912

Note: The Early Failure Rates were calculated as point estimates. The Long Term Failure Rates were calculated at 60% confidence using the Arrhenius equation at $0.7 e V$ activation energy and derating the assumed stress temperature of $150^{\circ} \mathrm{C}$ to an application temperature of $55^{\circ} \mathrm{C}$.

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6μ s to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy. P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than $10 \mu \mathrm{~s}$ acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth
- Space qualified, JM38510

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies.
An "A" version is available with tightened electrical specifications.

Typical Connection and Performance Curve

Functional Diagram

DS005692-32

Absolute Maximum Ratings (Note 1

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Package	
Limitation) (Note 2)	500 mW
Operating Ambient Temperature Range	
LF198/LF198A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LF298	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LF398/LF398A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage	Equal to Supply Voltage
Logic To Logic Reference	
Differential Voltage (Note 3) $+7 \mathrm{~V},-30 \mathrm{~V}$ Output Short Circuit Duration Indefinite	

Hold Capacitor Short
Circuit Duration
10 sec
Lead Temperature (Note 4)
H package (Soldering, 10 sec .
$260^{\circ} \mathrm{C}$
N package (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
M package:
Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$
Infrared (15 sec.)
$220^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) (typicals)
H package $215^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in still air) $85^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in 400LF/min air flow)
N package $115^{\circ} \mathrm{C} / \mathrm{W}$
M package $106^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (H package, typical) $20^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

The following specifcations apply for $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified

Parameter	Conditions	LF198/LF298			LF398			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		2	$\begin{gathered} \hline 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{10}			10^{10}		Ω
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} \hline 0.005 \\ 0.02 \end{gathered}$		0.004	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		80	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text {, "HOLD" mode }$ Full Temperature Range		0.5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		0.5	4	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 5)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 7)$ Hold Mode		30	100		30	200	pA
Acquisition Time to 0.1\%	$\begin{aligned} & \Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} \hline 4 \\ 20 \end{gathered}$			$\begin{gathered} \hline 4 \\ 20 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	80	110		80	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V
Input Offset Voltage, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

Electrical Characteristics

The following specifcations apply for $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	LF198A			LF398A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{10}			10^{10}		Ω
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} \hline 0.005 \\ 0.01 \end{gathered}$		0.004	$\begin{array}{c\|} \hline 0.005 \\ 0.01 \end{array}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		86	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text {, "HOLD" mode }$ Full Temperature Range		0.5	$\begin{aligned} & 1 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	1		1.0	1	mV
Supply Current, (Note 5)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 7)$ Hold Mode		30	100		30	100	pA
Acquisition Time to 0.1\%	$\begin{aligned} & \Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} \hline 6 \\ 25 \end{gathered}$		$\begin{gathered} \hline 4 \\ 20 \end{gathered}$	$\begin{gathered} \hline 6 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	90	110		90	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$, or the number given in the Absolute Maximum Ratings, whichever is lower. The maximum junction temperature, $\mathrm{T}_{\mathrm{JMAX}}$, for the LF198/LF198A is $150^{\circ} \mathrm{C}$; for the LF298, $115^{\circ} \mathrm{C}$; and for the LF398/LF398A, $100^{\circ} \mathrm{C}$.
Note 3: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 4: See AN-450 "Surface Mounting Methods and their effects on Product Reliability" for other methods of soldering surface mount devices.
Note 5: These parameters guaranteed over a supply voltage range of ± 5 to $\pm 18 \mathrm{~V}$, and an input range of $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V}$.
Note 6: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 7: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 8: A military RETS electrical test specification is available on request. The LF198 may also be procured to Standard Military Drawing \#5962-8760801GA or to MIL-STD-38510 part ID JM38510/12501SGA.

Typical Performance Characteristics

Dielectric Absorption Error in Hold Capacitor

DS005692-18

Dynamic Sampling Error

Note 9: See Definition of Terms

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LF198H, LF298H, LF398H, LF198AH or LF398AH NS Package Number H08C

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
