

LF398 - Monolithic Sample and Hold Circuit

Features

- Operates from ±5V to ±18V supplies
- Less than 10 µs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $C_h = 0.01 \ \mu F$
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth
- Space qualified, JM38510

Parametric Table

Datasheet

RoHS Compliance Information	
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits	
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits (Japanese)	

Package Availability, Models, Samples & Pricing

		Package					Factory Lead	ctory Lead Time			Std	Package		
	Part Number	Туре	Pins	Spec.	MSL Rating	Peak Reflow	RoHS Report	CAD Symbols	Weeks	Qty	Models		Pack Size	Marking Format
	LF398M	SOIC NARROW	14	STD	1	235	RoHS	N/A	Full produc	ction	N/A		rail of	NSUZXYTT
	LL990INI	SUIC NARROW		NOPB	1	260	KUHS	IN/A	6 weeks	1000	IN/A		55	LF398M
	LF398MX	SOIC NARROW	14	STD	1	235	RoHS	N/A	Full produc	ction	N/A		reel of	NSUZXYTT
	LL 220MIX	SOIC NARROW		NOPB	1	260	KUHS	IN/A	6 weeks	3000	N/A		2500	LF398M
				STD	1	NA			Full produc	ction			rail	NSUZXYTT
aded from <u>Elco</u>	LF398AN dis.com ele	MDIP ectronic comp	8 onen	t& CTBt	ributoı	. NA	RoHS	N/A	6 weeks	500	N/A		of 40	LF 398AN

			STD	1	NA			Full produ	Full production				rail	NSUZXYTT			
LF398N	MDIP	8	NOPB	1	NA	RoHS	S N/A	8 weeks	1000	N/A			of 40	LF 398N			
	TO-99		NODD	1	NA	Dello	N1/A	Obsole	te	N1/A			box	NSZXYTTE# LF398AH			
LF398AH	10-99	8	NOPB	1	NA	RoHS	N/A	6 weeks	1000	N/A	N/A	N/A	N/A			of 500	NSZATTTE# LF398AH
			STD	1	NA		Full produ	ction				box					
LF398H	TO-99	8	NOPB	1	NA	RoHS	N/A	6 weeks	1000	N/A			of 500	NSZXYTTE# LF398H			
							Custom					tray					
LF398 MDC			Unpad	ckaged E)ie			N/A	N/A	N/A			of N/A	-			
								Obsolete					 wafer jar				
LF398 MWC			```	Nafer				N/A	40000	N/A			of N/A	-			
Obsolete Ve	Dbsolete Versions								J	,	1]					
Obsole	ete Part Alternate Part or Supplier			Source	Last Time Buy Date												
LF398AH	LF198AH				NSC	12/03	12/03/2008										

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 µs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of 10¹⁰Ohm allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 µF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Reliability Metrics

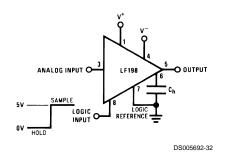
Part Number	Process	EFR Reject	EFR Sample Size	PPM *	LTA Rejects	LTA Device Hours	FITS	MTTF (Hours)
LF398 MDC	BIFET	0	12335	0	0	975000	4	276658912
LF398 MWC	BIFET	0	12335	0	0	975000	4	276658912
LF398AH	BIFET	0	12335	0	0	975000	4	276658912
LF398AN	BIFET	0	12335	0	0	975000	4	276658912
LF398H	BIFET	0	12335	0	0	975000	4	276658912
LF398M	BIFET	0	12335	0	0	975000	4	276658912
LF398MX	BIFET	0	12335	0	0	975000	4	276658912
LF398N	BIFET	0	12335	0	0	975000	4	276658912

Note: The Early Failure Rates were calculated as point estimates. The Long Term Failure Rates were calculated at 60% confidence using the Arrhenius equation at 0.7eV activation energy and derating the assumed stress temperature of 150°C to an application temperature of 55°C.

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 µs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10}\Omega$ allows high source impedances to be used without degrading accuracy. P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 µF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.


Features

- Operates from ±5V to ±18V supplies
- Less than 10 µs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at C_h = 0.01 µF
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth
- Space qualified, JM38510


Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4V. The LF198 will operate from \pm 5V to \pm 18V supplies.

An "A" version is available with tightened electrical specifications.

Typical Connection and Performance Curve

Functional Diagram

© 2000 National Semiconductor Corporation DS005692

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	±18V
Power Dissipation (Package	
Limitation) (Note 2)	500 mW
Operating Ambient Temperature R	Range
LF198/LF198A	–55°C to +125°C
LF298	–25°C to +85°C
LF398/LF398A	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Input Voltage	Equal to Supply Voltage
Logic To Logic Reference	
Differential Voltage (Note 3)	+7V, -30V
Output Short Circuit Duration	Indefinite

Hold Capacitor Short	
Circuit Duration	10 sec
Lead Temperature (Note 4)	
H package (Soldering, 10 sec.)	260°C
N package (Soldering, 10 sec.)	260°C
M package:	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C
Thermal Resistance (θ_{JA}) (typicals)	
H package 215°C/W (Board mount in still air)	
85°C/W (Board mount in	
400LF/min air flow)	
N package 115°C/W	
M package 106°C/W	
θ_{JC} (H package, typical) 20°C/W	

Electrical Characteristics

The following specifications apply for $-V_S$ + 3.5V $\leq V_{IN} \leq +V_S$ – 3.5V, +V_S = +15V, $-V_S$ = -15V, T_A = T_j = 25°C, C_h = 0.01 μF , R_L = 10 kΩ, LOGIC REFERENCE = 0V, LOGIC HIGH = 2.5V, LOGIC LOW = 0V unless otherwise specified.

Parameter	Conditions	L	.F198/LF	298		Units		
		Min	Тур	Max	Min	Тур	Max	1
Input Offset Voltage, (Note 5)	$T_i = 25^{\circ}C$		1	3		2	7	mV
	Full Temperature Range			5			10	mV
Input Bias Current, (Note 5)	$T_j = 25^{\circ}C$		5	25		10	50	nA
Input Impedance	Full Temperature Range			75			100	nA
Input Impedance	$T_j = 25^{\circ}C$		10 ¹⁰			10 ¹⁰		Ω
Gain Error	$T_j = 25^{\circ}C, R_L = 10k$		0.002	0.005		0.004	0.01	%
	Full Temperature Range			0.02			0.02	%
Feedthrough Attenuation Ratio	$T_{j} = 25^{\circ}C, C_{h} = 0.01 \ \mu F$	86	96		80	90		dB
at 1 kHz								
Output Impedance	T _j = 25°C, "HOLD" mode		0.5	2		0.5	4	Ω
	Full Temperature Range			4			6	Ω
"HOLD" Step, (Note 6)	$T_j = 25^{\circ}C, C_h = 0.01 \ \mu F, V_{OUT} = 0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 5)	T _j ≥25°C		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input	$T_j = 25^{\circ}C$		2	10		2	10	μA
Current								
Leakage Current into Hold	$T_{j} = 25^{\circ}C$, (Note 7)		30	100		30	200	pА
Capacitor (Note 5)	Hold Mode							
Acquisition Time to 0.1%	$\Delta V_{OUT} = 10V, C_{h} = 1000 \text{ pF}$		4			4		μs
	$C_{h} = 0.01 \ \mu F$		20			20		μs
Hold Capacitor Charging Current	$V_{IN}-V_{OUT} = 2V$		5			5		mA
Supply Voltage Rejection Ratio	$V_{OUT} = 0$	80	110		80	110		dB
Differential Logic Threshold	$T_i = 25^{\circ}C$	0.8	1.4	2.4	0.8	1.4	2.4	V
Input Offset Voltage, (Note 5)	$T_j = 25^{\circ}C$		1	1		2	2	mV
	Full Temperature Range			2			3	mV
Input Bias Current, (Note 5)	$T_i = 25^{\circ}C$		5	25		10	25	nA
	Full Temperature Range			75			50	nA

Downloaded from Elcodis.com electronic components distributor

Electrical Characteristics

The following specifications apply for $-V_S + 3.5V \le V_{IN} \le +V_S - 3.5V$, $+V_S = +15V$, $-V_S = -15V$, $T_A = T_j = 25^{\circ}C$, $C_h = 0.01 \ \mu$ F, $R_L = 10 \ k\Omega$, LOGIC REFERENCE = 0V, LOGIC HIGH = 2.5V, LOGIC LOW = 0V unless otherwise specified.

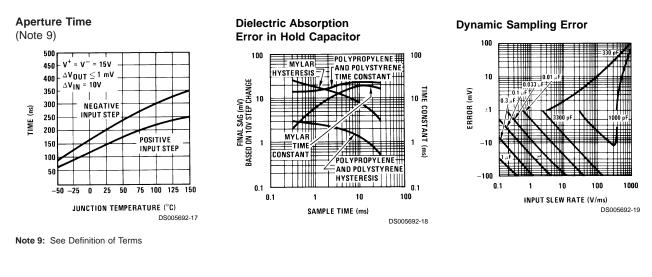
Parameter	Conditions		LF198/	4		Units		
		Min	Тур	Max	Min	Тур	Max	1
Input Impedance	$T_j = 25^{\circ}C$		10 ¹⁰			10 ¹⁰		Ω
Gain Error	$T_{j} = 25^{\circ}C, R_{L} = 10k$		0.002	0.005		0.004	0.005	%
	Full Temperature Range			0.01			0.01	%
Feedthrough Attenuation Ratio	$T_j = 25^{\circ}C, C_h = 0.01 \ \mu F$	86	96		86	90		dB
at 1 kHz								
Output Impedance	$T_j = 25^{\circ}C$, "HOLD" mode		0.5	1		0.5	1	Ω
	Full Temperature Range			4			6	Ω
"HOLD" Step, (Note 6)	$T_j = 25^{\circ}C, C_h = 0.01\mu F, V_{OUT} = 0$		0.5	1		1.0	1	mV
Supply Current, (Note 5)	T _j ≥25°C		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input	$T_j = 25^{\circ}C$		2	10		2	10	μA
Current								
Leakage Current into Hold	$T_{j} = 25^{\circ}C$, (Note 7)		30	100		30	100	pА
Capacitor (Note 5)	Hold Mode							
Acquisition Time to 0.1%	$\Delta V_{OUT} = 10V, C_{h} = 1000 \text{ pF}$		4	6		4	6	μs
	$C_{h} = 0.01 \ \mu F$		20	25		20	25	μs
Hold Capacitor Charging Current	$V_{IN}-V_{OUT} = 2V$		5			5		mA
Supply Voltage Rejection Ratio	$V_{OUT} = 0$	90	110		90	110		dB
Differential Logic Threshold	$T_i = 25^{\circ}C$	0.8	1.4	2.4	0.8	1.4	2.4	V

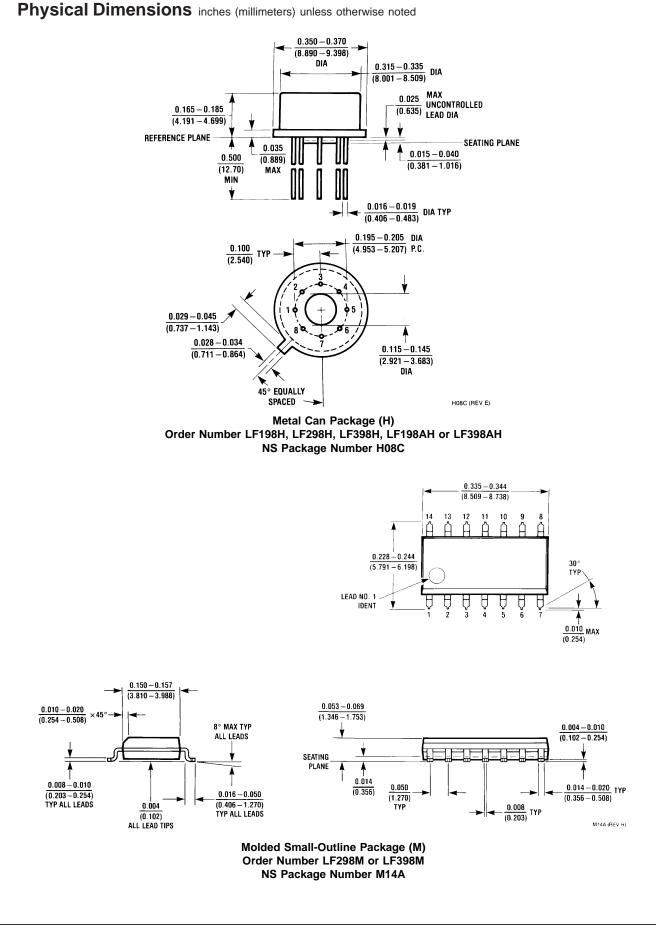
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any temperature is $P_D = (T_{JMAX} - T_A)/\theta_{JA}$, or the number given in the Absolute Maximum Ratings, whichever is lower. The maximum junction temperature, T_{JMAX} , for the LF198/LF198A is 150°C; for the LF298, 115°C; and for the LF398/LF398A, 100°C.

Note 3: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2V below the positive supply and 3V above the negative supply.

Note 4: See AN-450 "Surface Mounting Methods and their effects on Product Reliability" for other methods of soldering surface mount devices.


Note 5: These parameters guaranteed over a supply voltage range of ±5 to ±18V, and an input range of $-V_S$ + 3.5V $\leq V_{IN} \leq +V_S$ - 3.5V.


Note 6: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an additional 0.5 mV step with a 5V logic swing and a 0.01 µF hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.

Note 7: Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over full input signal range.


Note 8: A military RETS electrical test specification is available on request. The LF198 may also be procured to Standard Military Drawing #5962-8760801GA or to MIL-STD-38510 part ID JM38510/12501SGA.

Typical Performance Characteristics

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.