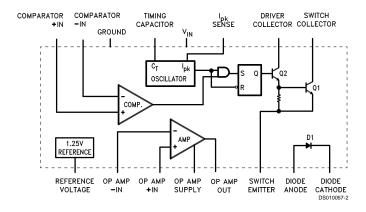


LM78S40

Universal Switching Regulator Subsystem


General Description

The LM78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching regulator systems. The device consists of a temperature compensated voltage reference, a duty-cycle controllable oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device can drive external NPN or PNP transistors when currents in excess of 1.5A or voltages in excess of 40V are required. The device can be used for step-down, step-up or inverting switching regulators as well as for series pass regulators. It features wide supply voltage range, low standby power dissipation, high efficiency and low drift. It is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems.

Features

- Step-up, step-down or inverting switching regulators
- Output adjustable from 1.25V to 40V
- Peak currents to 1.5A without external transistors
- Operation from 2.5V to 40V input
- Low standby current drain
- 80 dB line and load regulation
- High gain, high current, independent op amp
- Pulse width modulation with no double pulsing

Block and Connection Diagrams

Absolute Maximum Rat	ings (Note 1)	to GND	40V	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.		Common Mode Input Range (Comparator and Op Amp) Differential Input Voltage	-0.3 to V+	
Storage Temperature Range		(Note 4)	±30V	
Ceramic DIP	-65°C to +175°C	Output Short Circuit		
Molded DIP	-65°C to +150°C	Duration (Op Amp)	Continuous	
Operating Temperature Range		Current from V _{REF}	10 mA	
Extended (LM78S40J)	-55°C to +125°C	Voltage from Switch		
Industrial (LM78S40N)	-40°C to +125°C	Collectors to GND	40V	
Commercial (LM78S40CN)	0°C to +70°C	Voltage from Switch		
Lead Temperature		Emitters to GND	40V	
Ceramic DIP (Soldering, 60 sec.)	300°C	Voltage from Switch		
Molded DIP (Soldering, 10 sec.)	265°C	Collectors to Emitter	40V	
Internal Power Dissipation (Note 2) (Note 3)		Voltage from Power Diode to GND	40V	
16L-Ceramic DIP	, 1.50W	Reverse Power Diode Voltage	40V	
16L-Molded DIP	1.04W	Current through Power Switch	1.5A	
Input Voltage from V _{IN} to GND	40V	Current through Power Diode	1.5A	
Input Voltage from V ⁺ (Op Amp)		ESD Susceptibility	(to be determined)	

LM78S40 Electrical Characteristics (Note 5) $T_A = \text{Operating temperature range, V}_{IN} = 5.0\text{V, V}^+(\text{Op Amp}) = 5.0\text{V, unless otherwise specified.}$

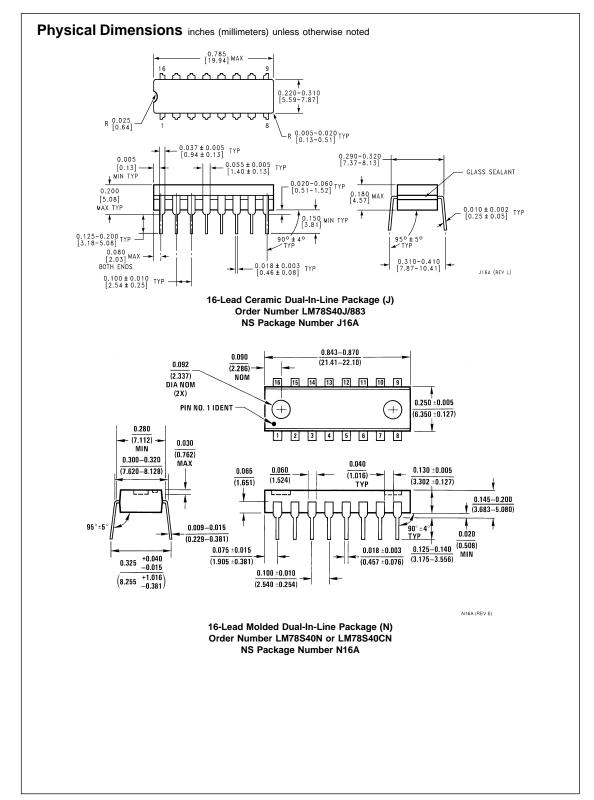
Symbol	Parameter		Conditions	Min	Тур	Max	Units
GENERA	L CHARACTERISTICS						•
I _{cc}	Supply Current	V _{IN} = 5.0V			1.8	3.5	mA
	(Op Amp Disconnected)	V _{IN} = 40V			2.3	5.0	mA
I _{cc}	Supply Current	V _{IN} = 5.0V				4.0	mA
	(Op Amp Connected)	V _{IN} = 40V				5.5	mA
REFERE	NCE SECTION						•
V_{REF}	Reference Voltage	I _{REF} = 1.0 mA	Extend -55° C < T _A < +125°C,				
			Comm 0 < T _A < +70°C,	1.180	1.245	1.310	V
			Indus -40°C < T _A < +85°C				
V _{R LINE}	Reference Voltage	$V_{IN} = 3.0 V \text{ to } V$	1 _{IN} = 40V,		0.04	0.2	mV/V
	Line Regulation	I _{REF} = 1.0 mA, T _A = 25°C					
V _{R LOAD}	Reference Voltage	I _{REF} = 1.0 mA to I _{REF} = 10 mA,			0.2	0.5	mV/mA
	Load Regulation	T _A = 25°C					
OSCILLA	TOR SECTION	•					
I _{CHG}	Charging Current	V _{IN} = 5.0V, T _A = 25°C		20		50	μA
I _{CHG}	Charging Current	V _{IN} = 40V, T _A = 25°C		20		70	μA
I _{DISCHG}	Discharge Current	V _{IN} = 5.0V, T _A = 25°C		150		250	μA
I _{DISCHG}	Discharge Current	V _{IN} = 40V, T _A = 25°C		150		350	μA
Vosc	Oscillator Voltage Swing	V _{IN} = 5.0V, T _A = 25°C			0.5		V
t _{on} /t _{off}	Ratio of Charge/				6.0		μs/μs
	Discharge Time						
CURREN	T LIMIT SECTION						
V _{CLS}	Current Limit Sense Voltage	T _A = 25°C		250		350	mV
OUTPUT	SWITCH SECTION	1					
V _{SAT 1}	Output Saturation Voltage 1	I _{SW} = 1.0A (Fig	ure 1)		1.1	1.3	V
V _{SAT 2}	Output Saturation Voltage 2	I _{SW} = 1.0A (Fig	nure 2)		0.45	0.7	V

LM78S40 Electrical Characteristics (Note 5) (Continued)

 T_A = Operating temperature range, V_{IN} = 5.0V, $V^+(Op\ Amp)$ = 5.0V, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OUTPUT	SWITCH SECTION			•	•	
h _{FE}	Output Transistor Current Gain	$I_{C} = 1.0A, V_{CE} = 5.0V, T_{A} = 25^{\circ}C$		70		
I _L	Output Leakage Current	V _O = 40V, T _A = 25°C		10		nA
POWER	DIODE					
V_{FD}	Forward Voltage Drop	I _D = 1.0A		1.25	1.5	V
I_{DR}	Diode Leakage Current	V _D = 40V, T _A = 25°C		10		nA
COMPAR	ATOR					
V _{IO}	Input Offset Voltage	V _{CM} = V _{REF}		1.5	15	mV
I _{IB}	Input Bias Current	V _{CM} = V _{REF}		35	200	nA
I _{IO}	Input Offset Current	V _{CM} = V _{REF}		5.0	75	nA
V _{CM}	Common Mode Voltage Range	T _A = 25°C	0		V _{IN} -2	V
PSRR	Power Supply Rejection Ratio	$V_{IN} = 3.0V \text{ to } 40V, T_A = 25^{\circ}C$	70	96		dB
OPERAT	ONAL AMPLIFIER		•			
V _{IO}	Input Offset Voltage	V _{CM} = 2.5V		4.0	15	mV
I _{IB}	Input Bias Current	V _{CM} = 2.5V		30	200	nA
I _{IO}	Input Offset Current	V _{CM} = 2.5V		5.0	75	nA
A _{VS} ⁺	Voltage Gain+	$R_L = 2.0 \text{ k}\Omega \text{ to GND};$	25	250		V/mV
VO		$V_{O} = 1.0V \text{ to } 2.5V, T_{A} = 25^{\circ}C$				ĺ
A _{VS} ⁻	Voltage Gain ⁻	R_L = 2.0 kΩ to V ⁺ (Op Amp) V_O = 1.0V to 2.5V, T_A = 25°C	25	250		V/mV
V _{CM}	Common Mode Voltage Range	T _A = 25°C	0		V _{CC} - 2	٧
CMR	Common Mode Rejection	V _{CM} = 0V to 3.0V, T _A = 25°C	76	100		dB
PSRR	Power Supply Rejection Ratio	V ⁺ (Op Amp) = 3.0V to 40V, T _A = 25°C	76	100		dB
l _o +	Output Source Current	T _A = 25°C	75	150		mA
I _O -	Output Sink Current	T _A = 25°C	10	35		mA
SR	Slew Rate	T _A = 25°C		0.6		V/µs
V _{OL}	Output Voltage LOW	I ₁ = -5.0 mA, T _A = 25°C			1.0	V
V _{OH}	Output Voltage High	I ₁ = 50 mA, T _A = 25°C	V + (Op		-	V
ОП	,		Amp) – 3V			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when ordering the device beyond its rated operating conditions.


Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic DIP at 10 mW/°C, and the 16L-Molded DIP at 8.3 mW/°C.

Note 5: A military RETS specification is available on request. At the time of printing, the LM78S40 RETS specification complied with the Min and Max limits in this table. The LM78S40J may also be procured as a Standard Military Drawing.

4

Note 2: T_{J Max} = 150°C for the Molded DIP, and 175°C for the Ceramic DIP.

Note 4: For supply voltages less than 30V, the absolute maximum voltage is equal to the supply voltage.

