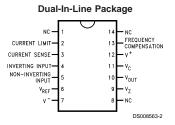
9

National Semiconductor

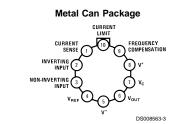
LM723/LM723C **Voltage Regulator**


General Description

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.

The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.


Connection Diagrams

Top View Order Number LM723J/883 or LM723CN See NS Package J14A or N14A

Features

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding
- external transistors
- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- Can be used as either a linear or a switching regulator

Note: Pin 5 connected to case.

Top View Order Number LM723H, LM723H/883 or LM723CH See NS Package H10C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 10)

Pulse Voltage from V ⁺ to V ⁻ (50 ms)	50V
Continuous Voltage from V ⁺ to V ⁻	40V
Input-Output Voltage Differential	40V
Maximum Amplifier Input Voltage (Either Input)	8.5V
Maximum Amplifier Input Voltage (Differential)	5V
Current from Vz	25 mA
Current from V _{REF}	15 mA
Internal Power Dissipation Metal Can (Note 2)	800 mW

Cavity DIP (Note 2)	900 mW					
Molded DIP (Note 2)	660 mW					
Operating Temperature Range						
LM723	–55°C to +150°C					
LM723C	0°C to +70°C					
Storage Temperature Range Metal Can	–65°C to +150°C					
Molded DIP	–55°C to +150°C					
Lead Temperature (Soldering, 4 sec. ma	ax.)					
Hermetic Package	300°C					
Plastic Package	260°C					
ESD Tolerance	1200V					
(Human body model, 1.5 $k\Omega$ in series with 100 pF)						

Electrical Characteristics (Note 3) (Note 10)

Parameter	Conditions	LM723			LM723C			Units
		Min	Тур	Max	Min	Тур	Max	
Line Regulation	$V_{IN} = 12V$ to $V_{IN} = 15V$		0.01	0.1		0.01	0.1	% V _{OUT}
	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$			0.3				% V _{out}
	$0^{\circ}C \le T_{A} \le +70^{\circ}C$						0.3	% V _{OUT}
	$V_{IN} = 12V$ to $V_{IN} = 40V$		0.02	0.2		0.1	0.5	% V _{OUT}
Load Regulation	$I_L = 1 \text{ mA to } I_L = 50 \text{ mA}$		0.03	0.15		0.03	0.2	% V _{оит}
	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$			0.6				% V _{оит}
	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$						0.6	% V _{оит}
Ripple Rejection	$f = 50$ Hz to 10 kHz, $C_{REF} = 0$		74			74		dB
	f = 50 Hz to 10 kHz, C_{REF} = 5 μ F		86			86		dB
Average Temperature Coeffic-	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$		0.002	0.015				%/°C
ient of Output Voltage (Note 8)	$0^{\circ}C \le T_{A} \le +70^{\circ}C$					0.003	0.015	%/°C
Short Circuit Current Limit	$R_{SC} = 10\Omega, V_{OUT} = 0$		65			65		mA
Reference Voltage		6.95	7.15	7.35	6.80	7.15	7.50	V
Output Noise Voltage	BW = 100 Hz to 10 kHz, $C_{REF} = 0$		86			86		μVrms
	BW = 100 Hz to 10 kHz, C_{REF} = 5 μ F		2.5			2.5		μVrms
Long Term Stability			0.05			0.05		%/1000 hrs
Standby Current Drain	$I_{L} = 0, V_{IN} = 30V$		1.7	3.5		1.7	4.0	mA
Input Voltage Range		9.5		40	9.5		40	V
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	V
$AL\theta$	Molded DIP					105		°C/W
ALθ	Cavity DIP		150					°C/W
ALB	H10C Board Mount in Still Air		165			165		°C/W
ALB	H10C Board Mount in 400 LF/Min Air Flow		66			66		°C/W
θ _{JC}			22			22		°C/W

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: See derating curves for maximum power rating above 25°C.

Note 3: Unless otherwise specified, $T_A = 25^{\circ}C$, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1$ mA, $R_{SC} = 0$, $C_1 = 100$ pF, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in *Figure 1*. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.


Note 4: L1 is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.

Note 5: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.

Note 6: Replace R1/R2 in figures with divider shown in *Figure 13*.

Note 7: V⁺ and V_{CC} must be connected to a +3V or greater supply.

Note 8: For metal can applications where Vz is required, an external 6.2V zener diode should be connected in series with Vour.

