

LM120/LM320 Series 3-Terminal Negative Regulators

General Description

The LM120 series are three-terminal negative regulators with a fixed output voltage of -5V, -12V, and -15V, and up to 1.5A load current capability. Where other voltages are required, the LM137 and LM137HV series provide an output voltage range of -1.2V to -47V.

The LM120 need only one external component—a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent

drain current of the devices allows this technique to be used with good regulation.

Features

- Preset output voltage error less than ±3%
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

Device	Package	Rated Power	Design Load
		Dissipation	Current
LM120/LM320	TO-3 (K)	20W	1.5A
	TO-39 (H)	2W	0.5A
LM320	TO-220 (T)	15W	1.5A

776702

*Required if regulator is separated from filter capacitor by more than 3 inches. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted.

 $\dagger Required$ for stability. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100 $\mu\text{F},$ a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

Absolute Maximum Ratings

-15 Volt Regulators (Note 13)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation
Input Voltage

Internally Limited

–15 Volt Regulators Electrical Characteristics

LM120/LM320	-40V
LM320T	–35V
Input-Output Voltage Differential	30V
Junction Temperatures	(Note 10)
Storage Temperature Range	–65°C to +150°C
Lead Temperature	
(Soldering, 10 sec.)	300°C

	Order Numbers	LM120K-15			LM320K-15			
			(TO-3)			(TO-3)		Unito
Desig	ın Output Current (I _D)	1A						Units
Dev	ice Dissipation (P _D)		2	2	ow		-	
Parameter	Conditions (Note 10)	Min	Тур	Max	Min	Тур	Max	
Output Voltage	$T_{J} = 25^{\circ}C, V_{IN} = 20V,$	-15.3	-15	-14.7	-15.4	–15	-14.6	V
	$I_{LOAD} = 5 \text{ mA}$							
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5$ mA,		5	10		5	20	mV
	$V_{MIN} \le V_{IN} \le V_{MAX}$							
Input Voltage		-35		-17	-35		-17	V
Ripple Rejection	f = 120 Hz	56	80		56	80		dB
Load Regulation,	$T_{J} = 25^{\circ}C, V_{IN} = 20V,$		30	80		30	80	mV
(Note 11)	$5 \text{ mA} \leq I_{LOAD} \leq I_D$							
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX}$	-15.5		-14.5	-15.6		-14.4	V
(Note 10)	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}, \text{P} \leq \text{P}_{\text{D}}$							
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4		2	4	mA
Quiescent Current	$T_J = 25^{\circ}C$							
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4		0.1	0.4	mA
	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}$		0.1	0.4		0.1	0.4	mA
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \ \mu F, I_L = 5 \ mA,$		400			400		μV
	$V_{IN} = 20V$, 10 Hz $\leq f \leq 100$ kHz							
Long Term Stability			15	150		15	150	mV
Thermal Resistance								
Junction to Case				3			3	°C/W
Junction to Ambient				35			35	°C/W

–15 Volt Regulators Electrical Characteristics

er Numbers			Metal Can Package					
Order Numbers Design Output Current (I _D)		LM120H-15 (TO-39)			LM320H-15 (TO-39)			
		0.2A					Units	
Dissipation (P _D)			2	2W				
Conditions (Note 10)	Min	Тур	Max	Min	Min Typ Max		7	
$J = 25^{\circ}C, V_{IN} = 20V,$	-15.3	-15	-14.7	-15.4	-15	-14.6	V	
_{OAD} = 5 mA								
$J = 25^{\circ}C, I_{LOAD} = 5 \text{ mA},$		5	10		5	20	mV	
$_{\rm MIN} \leq V_{\rm IN} \leq V_{\rm MAX}$								
	Itput Current (I _D) Dissipation (P _D) Conditions (Note 10) $I = 25^{\circ}C$, $V_{IN} = 20V$, DAD = 5 mA $I = 25^{\circ}C$, $I_{LOAD} = 5 \text{ mA}$, $MIN \le V_{IN} \le V_{MAX}$	Itput Current (I_D)MinDissipation (P_D)MinI = 25°C, $V_{IN} = 20V$, -15.3DAD = 5 mAI = 25°C, $I_{LOAD} = 5$ mA,I = 25°C, $I_{LOAD} = 5$ mA,I = 25°C, $V_{IN} \leq V_{MAX}$	(10-3)itput Current (I _D)Dissipation (P _D)MinTyp $I = 25^{\circ}C, V_{IN} = 20V,$ -15.3 -15 $DAD = 5 \text{ mA}$ -15.3 -15 $I = 25^{\circ}C, I_{LOAD} = 5 \text{ mA},$ 5 $MIN \le V_{IN} \le V_{MAX}$ 5	(10-39)Itput Current (I _D)0Dissipation (P _D)0Conditions (Note 10)MinTypI = 25°C, V _{IN} = 20V,-15.3-15 $_{DAD} = 5 \text{ mA}$ -15.3-15 $_{J} = 25°C, I_{LOAD} = 5 \text{ mA},$ 510 $_{MIN} \leq V_{IN} \leq V_{MAX}$ 510	(10-39) Intput Current (I _D) 0.2A Dissipation (P _D) 2W Conditions (Note 10) Min Typ Max Min I = 25°C, V _{IN} = 20V, -15.3 -15 -14.7 -15.4 DAD = 5 mA -15 10 -15.4 -10 I = 25°C, I _{LOAD} = 5 mA, 5 10 -10	(10-33) (10-33) (10-33) (10-33) (10-33) (10-33) Jissipation (P _D) 0.2A 2W Conditions (Note 10) Min Typ J = 25°C, V _{IN} = 20V, -15 -14.7 -15.4 -15 Data = 5 mA 5 10 5 MIN \leq V _{IN} \leq V _{MAX} 5 10 5	(10-39) (10-39) Intput Current (I _D) Dissipation (P _D) 2W Conditions (Note 10) Min Typ Max Min Typ Max $I = 25^{\circ}$ C, $V_{IN} = 20V$, -15.3 -15 -14.7 -15.4 -15 -14.6 $DAD = 5 \text{ mA}$ $I = 25^{\circ}$ C, $I_{LOAD} = 5 \text{ mA}$, $I = 25^{\circ}$ C, $I_{LOAD} = 5 \text{ mA}$, $I = 25^{\circ}$ C, $I_{N} \le V_{MAX}$ $I = 10^{\circ}$ C $I = 10^{\circ}$ C $I = 10^{\circ}$ C	

			Metal Can Package						
Order Numbers Design Output Current (I _D)			LM120H-15 (TO-39)			LM320H-15 (TO-39)			
			0.2A						
Devi	ce Dissipation (P _D)	2W							
Parameter	Conditions (Note 10)	Min	Тур	Max	Min Typ Max				
Input Voltage		-35		-17	-35		-17	V	
Ripple Rejection	f = 120 Hz	56	80		56	80		dB	
Load Regulation,	$T_{J} = 25^{\circ}C, V_{IN} = 20V,$		10	25		10	40	mV	
(Note 11)	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}$								
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX},$	-15.5		-14.5	-15.6		-14.4	V	
(Note 10)	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}, \text{P} \leq \text{P}_{\text{D}}$								
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4		2	4	mA	
Quiescent Current	$T_J = 25^{\circ}C$								
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.05	0.4		0.05	0.4	mA	
	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}$		0.03	0.4		0.03	0.4	mA	
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \ \mu F, I_L = 5 \ mA,$		400			400		μV	
	$V_{IN} = 20V$, 10 Hz $\leq f \leq 100$ kHz								
Long Term Stability			15	150		15	150	mV	
Thermal Resistance									
Junction to Case				(Note 12)			(Note 12)	°C/W	
Junction to Ambient				(Note 12)			(Note 12)	°C/W	

–15 Volt Regulators Electrical Characteristics

Order Numbers		Powe	Power Plastic Package LM320T-15 (TO-220)			
D	Design Output Current (I _D)		Units			
	Device Dissipation (P _D)		15W			
Parameter	Conditions (Note 10)	Min	Тур	Max		
Output Voltage	$T_{J} = 25^{\circ}C, V_{IN} = 20V,$	-15.5	-15	-14.5	V	
	$I_{LOAD} = 5 \text{ mA}$					
Line Regulation	$T_J = 25^{\circ}C, I_{LOAD} = 5 \text{ mA},$		5	20	mV	
	$V_{MIN} \le V_{IN} \le V_{MAX}$					
Input Voltage		-35		-17.5	V	
Ripple Rejection	f = 120 Hz	56	80		dB	
Load Regulation,	$T_{\rm J} = 25^{\circ} {\rm C}, \ V_{\rm IN} = 20 {\rm V},$		30	80	mV	
(Note 11)	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}$					
Output Voltage,	$17.5V \le V_{IN} \le V_{MAX}$	-15.7		-14.3	V	
(Note 10)	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}, \text{P} \leq \text{P}_{\text{D}}$					
Quiescent Current	$V_{MIN} \le V_{IN} \le V_{MAX}$		2	4	mA	
Quiescent Current	$T_J = 25^{\circ}C$					
Change	$V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4	mA	
	$5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}$		0.1	0.4	mA	
Output Noise Voltage	$T_A = 25^{\circ}C, C_L = 1 \ \mu F, I_L = 5 \ mA,$		400		μV	
	V _{IN} = 20V, 10 Hz ≤ f ≤ 100 kHz					
Long Term Stability			30		mV	

Downloaded from Elcodis.com electronic components distributor

o	order Numbers	Power Plastic Package LM320T-15 (TO-220)		-		
Design	Output Current (I _D)		1A 15W		Units	
Devic	e Dissipation (P _D)					
Parameter	Conditions (Note 10)	Min	Тур	Max		
Thermal Resistance						
Junction to Case			4		°C/W	
Junction to Ambient			50			

Note 10: This specification applies over $-55^{\circ}C \leq T_{J} \leq +150^{\circ}C$ for the LM120 and $0^{\circ}C \leq T_{J} \leq +125^{\circ}C$ for the LM320.

Note 11: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

Note 12: Thermal resistance of typically 85°C/W (in 400 linear feet/min air flow), 224°C/W (in static air) junction to ambient, of typically 21°C/W junction to case. Note 13: Refer to RETS120-15H drawing for LM120H-15 or RETS120-15K drawing for LM120K-15 military specifications.

Typical Performance Characteristics

776721

Output Impedance TO-5 and TO-202 Packages

LM120/LM320

