

Dual, 16 MHz, Rail-to-Rail FET Input Amplifier

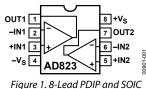
AD823

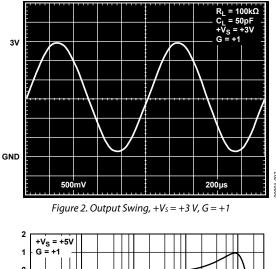
FEATURES

Single-supply operation **Output swings rail-to-rail** Input voltage range extends below ground Single-supply capability from 3 V to 36 V **High load drive** Capacitive load drive of 500 pF, G = +1 Output current of 15 mA, 0.5 V from supplies Excellent ac performance on 2.6 mA/amplifier -3 dB bandwidth of 16 MHz, G = +1 350 ns settling time to 0.01% (2 V step) Slew rate of 22 V/µs Good dc performance 800 µV maximum input offset voltage $2 \,\mu V/^{\circ}C$ offset voltage drift 25 pA maximum input bias current Low distortion: -108 dBc worst harmonic @ 20 kHz Low noise: 16 nV/√Hz @ 10 kHz No phase inversion with inputs to the supply rails

APPLICATIONS

Battery-powered precision instrumentation Photodiode preamps Active filters 12-bit to 16-bit data acquisition systems Medical instrumentation


GENERAL DESCRIPTION


The AD823 is a dual precision, 16 MHz, JFET input op amp that can operate from a single supply of 3.0 V to 36 V or from dual supplies of ± 1.5 V to ± 18 V. It has true single-supply capability with an input voltage range extending below ground in single-supply mode. Output voltage swing extends to within 50 mV of each rail for $I_{OUT} \leq 100 \mu$ A, providing outstanding output dynamic range.


An offset voltage of 800 μ V maximum, an offset voltage drift of 2 μ V/°C, input bias currents below 25 pA, and low input voltage noise provide dc precision with source impedances up to a Gigaohm. It provides 16 MHz, -3 dB bandwidth, -108 dB THD @ 20 kHz, and a 22 V/ μ s slew rate with a low supply current of 2.6 mA per amplifier. The AD823 drives up to 500 pF of direct capacitive load as a follower and provides an output current of 15 mA, 0.5 V from the supply rails. This allows the amplifier to handle a wide range of load conditions.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAM

This combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for applications such as A/D drivers, high speed active filters, and other low voltage, high dynamic range systems.

The AD823 is available over the industrial temperature range of -40 °C to +85 °C and is offered in both 8-lead PDIP and 8-lead SOIC packages.

SPECIFICATIONS

At T_{A} = 25°C, +V_{\text{S}} = +5 V, R_{L} = 2 k Ω to 2.5 V, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth, V ₀ \leq 0.2 V p-p	G = +1	12	16		MHz
Full Power Response	$V_0 = 2 V p - p$		3.5		MHz
Slew Rate	$G = -1$, $V_0 = 4 V$ Step	14	22		V/µs
Settling Time					
to 0.1%	$G = -1, V_0 = 2 V Step$		320		ns
to 0.01%	$G = -1, V_0 = 2 V Step$		350		ns
NOISE/DISTORTION PERFORMANCE					
Input Voltage Noise	f = 10 kHz		16		nV/√Hz
Input Current Noise	f = 1 kHz		1		fA/√Hz
Harmonic Distortion	$R_L = 600 \Omega$ to 2.5 V, $V_O = 2 V p$ -p, $f = 20 kHz$		-108		dBc
Crosstalk					
f = 1 kHz	$R_L = 5 k\Omega$		-105		dB
f = 1 MHz	$R_L = 5 k\Omega$		-63		dB
DC PERFORMANCE					
Initial Offset			0.2	0.8	mV
Maximum Offset Over temperature			0.3	2.0	mV
Offset Drift			2		µV/°C
Input Bias Current	$V_{CM} = 0 V to 4 V$		3	25	pA
at T _{MAX}	$V_{CM} = 0 V \text{ to } 4 V$		0.5	5	nA
Input Offset Current			2	20	pА
at T _{MAX}			0.5		nA
Open-Loop Gain	$V_{\rm O}$ = 0.2 V to 4 V, R_L = 2 k Ω	20	45		V/mV
T _{MIN} to T _{MAX}		20			V/mV
INPUT CHARACTERISTICS					
Input Common-Mode Voltage Range		-0.2 to +3	-0.2 to +3.8		V
Input Resistance			10 ¹³		Ω
Input Capacitance			1.8		pF
Common-Mode Rejection Ratio	$V_{CM} = 0 V$ to 3 V	60	76		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing					
$I_L = \pm 100 \ \mu A$			0.025 to 4.975		V
$I_L = \pm 2 \text{ mA}$			0.08 to 4.92		V
$I_L = \pm 10 \text{ mA}$			0.25 to 4.75		V
Output Current	$V_{OUT} = 0.5 V \text{ to } 4.5 V$		16		mA
Short-Circuit Current	Sourcing to 2.5 V		40		mA
	Sinking to 2.5 V		30		mA
Capacitive Load Drive	G = +1		500		pF
POWER SUPPLY					1
Operating Range		3		36	V
Quiescent Current	T _{MIN} to T _{MAX} , total		5.2	5.6	mA
Power Supply Rejection Ratio	$V_s = 5 V$ to 15 V, T_{MIN} to T_{MAX}	70	80		dB

AD823

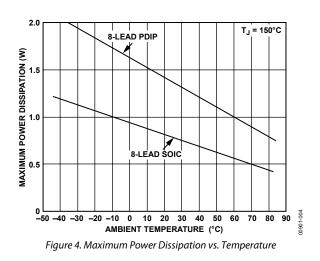
At $T_{\rm A}$ = 25°C, +V_s = +3.3 V, $R_{\rm L}$ = 2 k Ω to 1.65 V, unless otherwise noted.

Table 2.

Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth, V ₀ \leq 0.2 V p-p	G = +1	12	15		MHz
Full Power Response	$V_0 = 2 V p - p$		3.2		MHz
Slew Rate	$G = -1$, $V_0 = 2 V$ Step	13	20		V/µs
Settling Time					
to 0.1%	$G = -1$, $V_0 = 2$ V Step		250		ns
to 0.01%	$G = -1$, $V_0 = 2$ V Step		300		ns
NOISE/DISTORTION PERFORMANCE					
Input Voltage Noise	f = 10 kHz		16		nV/√Hz
Input Current Noise	f = 1 kHz		1		fA/√Hz
Harmonic Distortion	$R_L = 100 \Omega$, $V_O = 2 V p$ -p, $f = 20 kHz$		-93		dBc
Crosstalk					
f = 1 kHz	$R_L = 5 k\Omega$		-105		dB
f = 1 MHz	$R_L = 5 k\Omega$		-63		dB
DC PERFORMANCE					
Initial Offset			0.2	1.5	mV
Maximum Offset Over temperature			0.5	2.5	mV
Offset Drift			2		μV/°C
Input Bias Current	$V_{CM} = 0 V$ to $2 V$		3	25	pА
at T _{MAX}	$V_{CM} = 0 V$ to 2 V		0.5	5	nA
Input Offset Current			2	20	pА
at T _{MAX}			0.5		nA
Open-Loop Gain	$V_{\rm O}$ = 0.2 V to 2 V, R_L = 2 $k\Omega$	15	30		V/mV
T _{MIN} to T _{MAX}		12			V/mV
INPUT CHARACTERISTICS					
Input Common-Mode Voltage Range		-0.2 to +1	-0.2 to +1.8		V
Input Resistance			10 ¹³		Ω
Input Capacitance			1.8		pF
Common-Mode Rejection Ratio	$V_{CM} = 0 V$ to 1 V	54	70		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing					
I∟ = ±100 μA			0.025 to 3.275		V
$I_L = \pm 2 \text{ mA}$			0.08 to 3.22		V
$I_L = \pm 10 \text{ mA}$			0.25 to 3.05		V
Output Current	$V_{OUT} = 0.5 V \text{ to } 2.5 V$		15		mA
Short-Circuit Current	Sourcing to 1.5 V		40		mA
	Sinking to 1.5 V		30		mA
Capacitive Load Drive	G = +1		500		рF
POWER SUPPLY					
Operating Range		3		36	V
Quiescent Current	T _{MIN} to T _{MAX} , total		5.0	5.7	mA
Power Supply Rejection Ratio	$V_s = 3.3 V$ to 15 V, T_{MIN} to T_{MAX}	70	80		dB

At $T_{\rm A}$ = 25°C, $V_{\rm S}$ = ±15 V, R_L = 2 k Ω to 0 V, unless otherwise noted.

Table 3.


Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth, V ₀ \leq 0.2 V p-p	G = +1	12	16		MHz
Full Power Response	$V_0 = 2 V p - p$		4		MHz
Slew Rate	$G = -1, V_0 = 10 V Step$	17	25		V/µs
Settling Time					
to 0.1%	$G = -1$, $V_0 = 10 V$ Step		550		ns
to 0.01%	$G = -1, V_0 = 10 V Step$		650		ns
NOISE/DISTORTION PERFORMANCE					
Input Voltage Noise	f = 10 kHz		16		nV/√Hz
Input Current Noise	f = 1 kHz		1		fA/√Hz
Harmonic Distortion	$R_L = 600 \Omega$, $V_O = 10 V p-p$, $f = 20 kHz$		-90		dBc
Crosstalk					
f = 1 kHz	$R_L=5 k\Omega$		-105		dB
f = 1 MHz	$R_L=5 k\Omega$		-63		dB
DC PERFORMANCE					
Initial Offset			0.7	3.5	mV
Maximum Offset Over temperature			1.0	7	mV
Offset Drift			2		μV/°C
Input Bias Current	$V_{CM} = 0 V$		5	30	pА
	$V_{CM} = -10 V$		60		pА
at T _{MAX}	$V_{CM} = 0 V$		0.5	5	nA
Input Offset Current			2	20	pА
at T _{MAX}			0.5		nA
Open-Loop Gain	$V_{\rm O}$ = +10 V to -10 V, R_L = 2 k Ω	30	60		V/mV
T _{MIN} to T _{MAX}		30			V/mV
INPUT CHARACTERISTICS					
Input Common-Mode Voltage Range		-15.2 to +13	-15.2 to +13.8		V
Input Resistance			10 ¹³		Ω
Input Capacitance			1.8		pF
Common-Mode Rejection Ratio	$V_{CM} = -15 V \text{ to } +13 V$	66	82		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing					
$I_L = \pm 100 \ \mu A$			-14.95 to +14.95		V
$I_L = \pm 2 \text{ mA}$			-14.92 to +14.92		V
$I_L = \pm 10 \text{ mA}$			-14.75 to +14.75		V
Output Current	$V_{OUT} = -14.5 V \text{ to } +14.5 V$		17		mA
Short-Circuit Current	Sourcing to 0 V		80		mA
	Sinking to 0 V		60		mA
Capacitive Load Drive	G = +1		500		рF
POWER SUPPLY					
Operating Range		3		36	V
Quiescent Current	T _{MIN} to T _{MAX} , total		7.0	8.4	mA
Power Supply Rejection Ratio	$V_s = 5 V$ to 15 V, T_{MIN} to T_{MAX}	70	80		dB

ABSOLUTE MAXIMUM RATINGS

Table 4

Parameter	Rating
Supply Voltage	36 V
Internal Power Dissipation	
PDIP (N)	1.3 W
SOIC (R)	0.9 W
Input Voltage (Common Mode)	±Vs
Differential Input Voltage	±1.2 V
Output Short-Circuit Duration	See Figure 4
Storage Temperature Range N, R	–65°C to +125°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature Range (Soldering, 10 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

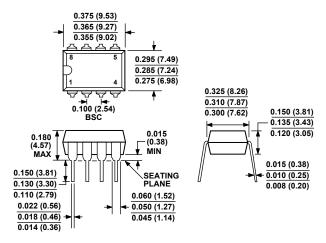
THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Specification is for device in free air.

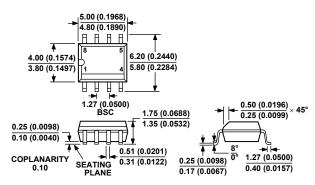
Table 5. Thermal Resistance

Package Type	Αιθ	Unit
8-Lead PDIP	90	°C/W
8-Lead SOIC	160	°C/W


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD823


OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 47. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 48. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Models	Temperature Range	Package Description	Package Option
AD823AN	-40°C to +85°C	8-Lead PDIP	N-8
AD823ANZ ¹	-40°C to +85°C	8-Lead PDIP	N-8
AD823AR	-40°C to +85°C	8-Lead SOIC_N	R-8
AD823AR-REEL	-40°C to +85°C	8-Lead SOIC_N, 13" Reel	R-8
AD823AR-REEL7	-40°C to +85°C	8-Lead SOIC_N, 7" Reel	R-8
AD823ARZ ¹	-40°C to +85°C	8-Lead SOIC_N	R-8
AD823ARZ-RL ¹	-40°C to +85°C	8-Lead SOIC_N, 13" Reel	R-8
AD823ARZ-R7 ¹	-40°C to +85°C	8-Lead SOIC_N, 7" Reel	R-8

 1 Z = RoHS Compliant Part.