## FEATURES

True single-supply operation
Output swings rail-to-rail
Input voltage range extends below ground
Single-supply capability from 3 V to 36 V
Dual-supply capability from $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
High load drive
Capacitive load drive of $\mathbf{3 5 0} \mathbf{~ p F , G}=+1$
Minimum output current of 15 mA
Excellent ac performance for low power
$800 \mu \mathrm{~A}$ maximum quiescent current per amplifier
Unity-gain bandwidth: 1.8 MHz
Slew rate of $3 \mathrm{~V} / \mu \mathrm{s}$
Good dc performance
$800 \mu \mathrm{~V}$ maximum input offset voltage
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical offset voltage drift
25 pA maximum input bias current

## Low noise

13 nV/VHz @ 10 kHz
No phase inversion

## APPLICATIONS

Battery-powered precision instrumentation

## Photodiode preamps

## Active filters

12-bit to 14-bit data acquisition systems
Medical instrumentation
Low power references and regulators

## CONNECTION DIAGRAM



Figure 1. 8-Lead PDIP (N Suffix);
8-Lead MSOP (RM Suffix);
and 8-Lead SOIC_N (R Suffix)

## GENERAL DESCRIPTION

The AD822 is a dual precision, low power FET input op amp that can operate from a single supply of 3 V to 36 V or dual supplies of $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. It has true single-supply capability with an input voltage range extending below the negative rail, allowing the AD822 to accommodate input signals below ground in the single-supply mode. Output voltage swing extends to within 10 mV of each rail, providing the maximum output dynamic range.


Figure 2. Input Voltage Noise vs. Frequency
Offset voltage of $800 \mu \mathrm{~V}$ maximum, offset voltage drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias currents below 25 pA , and low input voltage noise provide dc precision with source impedances up to a gigaohm. The 1.8 MHz unity-gain bandwidth, -93 dB THD at 10 kHz , and $3 \mathrm{~V} / \mu \mathrm{s}$ slew rate are provided with a low supply current of $800 \mu \mathrm{~A}$ per amplifier.

The AD822 drives up to 350 pF of direct capacitive load as a follower and provides a minimum output current of 15 mA . This allows the amplifier to handle a wide range of load conditions. Its combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for the single-supply user.

The AD822 is available in two performance grades. The A grade and $B$ grade are rated over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The AD822 is offered in three varieties of 8-lead packages: PDIP, MSOP, and SOIC_N.


Figure 3. Gain-of-2 Amplifier; $V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$, $V_{I N}=2.5 \mathrm{~V}$ Sine Centered at $1.25 \mathrm{~V}, R_{L}=100 \Omega$

## AD822

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, 5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=0.2 \mathrm{~V}$, unless otherwise noted.
Table 1.

| Parameter | Conditions | A Grade |  |  | B Grade |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| DC PERFORMANCE |  |  |  |  |  |  |  |  |
| Initial Offset |  |  | 0.1 | 0.8 |  | 0.1 | 0.4 | mV |
| Maximum Offset Over Temperature |  |  | 0.5 | 1.2 |  | 0.5 | 0.9 | mV |
| Offset Drift |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current | $\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$ to 4V |  | 2 | 25 |  | 2 | 10 | pA |
| At TMax |  |  | 0.5 | 5 |  | 0.5 | 2.5 | nA |
| Input Offset Current |  |  | 2 | 20 |  | 2 | 10 | pA |
| At $\mathrm{T}_{\text {max }}$ |  |  | 0.5 |  |  | 0.5 |  | nA |
| Open-Loop Gain | $\mathrm{V}_{\text {out }}=0.2 \mathrm{~V}$ to 4 V |  |  |  |  |  |  |  |
|  | $\mathrm{RL}=100 \mathrm{k} \Omega$ | 500 | 1000 |  | 500 | 1000 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 400 |  |  | 400 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | 80 | 150 |  | 80 | 150 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 80 |  |  | 80 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{RL}=1 \mathrm{k} \Omega$ | 15 | 30 |  | 15 | 30 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 10 |  |  | 10 |  |  | $\mathrm{V} / \mathrm{mV}$ |
| NOISE/HARMONIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Input Voltage Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V}$ p-p |
| $\mathrm{f}=10 \mathrm{~Hz}$ |  |  | 25 |  |  | 25 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=100 \mathrm{~Hz}$ |  |  | 21 |  |  | 21 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 16 |  |  | 16 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 13 |  |  | 13 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| Input Current Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 18 |  |  | 18 |  | fA p-p |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 0.8 |  |  | 0.8 |  | $\mathrm{fA} / \sqrt{ } \mathrm{Hz}$ |
| Harmonic Distortion | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V}$ |  |  |  |  |  |  |  |
| $\mathrm{f}=10 \mathrm{kHz}$ | $\mathrm{V}_{\text {Out }}=0.25 \mathrm{~V}$ to 4.75 V |  | -93 |  |  | -93 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Unity-Gain Frequency |  |  | 1.8 |  |  | 1.8 |  | MHz |
| Full Power Response | Vout p-p $=4.5 \mathrm{~V}$ |  | 210 |  |  | 210 |  | kHz |
| Slew Rate |  |  | 3 |  |  | 3 |  | V/ $\mu \mathrm{s}$ |
| Settling Time |  |  |  |  |  |  |  |  |
| To 0.1\% | Vout $=0.2 \mathrm{~V}$ to 4.5 V |  | 1.4 |  |  | 1.4 |  | $\mu \mathrm{s}$ |
| To 0.01\% | $\mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}$ to 4.5 V |  | 1.8 |  |  | 1.8 |  | $\mu \mathrm{s}$ |
| MATCHING CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Initial Offset |  |  |  | 1.0 |  |  | 0.5 | mV |
| Maximum Offset Over Temperature Offset Drift |  |  | 3 | 1.6 |  | 3 | 1.3 | mV <br> $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current |  |  |  | 20 |  |  | 10 | pA |
| Crosstalk @ $\mathrm{f}=1 \mathrm{kHz}$ | $\mathrm{RL}=5 \mathrm{k} \Omega$ |  | -130 |  |  | -130 |  | dB |
| Crosstalk @ f = 100 kHz | R L $=5 \mathrm{k} \Omega$ |  | -93 |  |  | -93 |  | dB |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Input Voltage Range ${ }^{1}, \mathrm{~T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | -0.2 |  | +4 | -0.2 |  | +4 | V |
| Common-Mode Rejection Ratio (CMRR) | $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 2 V | 66 | 80 |  | 69 | 80 |  | dB |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 2 V | 66 |  |  | 66 |  |  | dB |



[^0]
## AD822

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

| Parameter | Conditions | A Grade |  |  | B Grade |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| DC PERFORMANCE |  |  |  |  |  |  |  |  |
| Initial Offset |  |  | 0.1 | 0.8 |  | 0.1 | 0.4 | mV |
| Maximum Offset Over Temperature |  |  | 0.5 | 1.5 |  | 0.5 | 1 | mV |
| Offset Drift |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current | V СM $=-5 \mathrm{~V}$ to +4 V |  | 2 | 25 |  | 2 | 10 | pA |
| At $\mathrm{Tmax}^{\text {m }}$ |  |  | 0.5 | 5 |  | 0.5 | 2.5 | nA |
| Input Offset Current |  |  | 2 | 20 |  | 2 | 10 | pA |
| At $\mathrm{T}_{\text {max }}$ |  |  | 0.5 |  |  | 0.5 |  | nA |
| Open-Loop Gain | Vout $=-4 \mathrm{~V}$ to +4 V |  |  |  |  |  |  |  |
|  | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ | 400 | 1000 |  | 400 | 1000 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 400 |  |  | 400 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{RL}=10 \mathrm{k} \Omega$ | 80 | 150 |  | 80 | 150 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 80 |  |  | 80 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 20 | 30 |  | 20 | 30 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 10 |  |  | 10 |  |  | $\mathrm{V} / \mathrm{mV}$ |
| NOISE/HARMONIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Input Voltage Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V}$ p-p |
| $\mathrm{f}=10 \mathrm{~Hz}$ |  |  | 25 |  |  | 25 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=100 \mathrm{~Hz}$ |  |  | 21 |  |  | 21 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 16 |  |  | 16 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 13 |  |  | 13 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| Input Current Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 18 |  |  | 18 |  | fA p-p |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 0.8 |  |  | 0.8 |  | $\mathrm{fA} / \sqrt{ } \mathrm{Hz}$ |
| Harmonic Distortion | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ |  |  |  |  |  |  |  |
| $\mathrm{f}=10 \mathrm{kHz}$ | $V_{\text {OUT }}= \pm 4.5 \mathrm{~V}$ |  | -93 |  |  | -93 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Unity-Gain Frequency |  |  | 1.9 |  |  | 1.9 |  | MHz |
| Full Power Response | $V_{\text {Out }} \mathrm{p}-\mathrm{p}=9 \mathrm{~V}$ |  | 105 |  |  | 105 |  | kHz |
| Slew Rate |  |  | 3 |  |  | 3 |  | V/ $\mu \mathrm{s}$ |
| Settling Time |  |  |  |  |  |  |  |  |
| to 0.1\% | $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\pm 4.5 \mathrm{~V}$ |  | 1.4 |  |  | 1.4 |  | $\mu \mathrm{s}$ |
|  | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\pm 4.5 \mathrm{~V}$ |  | 1.8 |  |  | 1.8 |  | $\mu \mathrm{s}$ |
| MATCHING CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Initial Offset |  |  |  | 1.0 |  |  | 0.5 | mV |
| Maximum Offset Over Temperature |  |  |  | 3 |  |  | 2 | mV |
| Offset Drift |  |  | 3 |  |  | 3 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current |  |  |  | 25 |  |  | 10 | pA |
| Crosstalk @ $\mathrm{f}=1 \mathrm{kHz}$ | $\mathrm{RL}=5 \mathrm{k} \Omega$ |  | -130 |  |  | -130 |  | dB |
| Crosstalk @f= 100 kHz | $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ |  | -93 |  |  | -93 |  | dB |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Input Voltage Range ${ }^{1}, \mathrm{~T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | -5.2 |  | +4 | -5.2 |  | +4 | V |
| Common-Mode Rejection Ratio (CMRR) | $\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to +2 V | 66 | 80 |  |  | 80 |  | dB |
| $\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {Max }}$ | $\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to +2 V | 66 |  |  | 66 |  |  | dB |
| Input Impedance |  |  |  |  |  |  |  |  |
| Differential |  |  | $10^{13} \mid 0.5$ |  |  | $10^{13} \mid 0.5$ |  | $\Omega \\| \mathrm{pF}$ |
| Common Mode |  |  | $10^{13}\| \| 2.8$ |  |  | $10^{13}\| \| 2.8$ |  | $\Omega \\| \mathrm{pF}$ |


| Parameter | Conditions | A Grade |  |  | B Grade |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Output Saturation Voltage ${ }^{2}$ |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SIINK }}=20 \mu \mathrm{~A}$ |  | 5 | 7 |  | 5 | 7 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 10 |  |  | 10 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$ | $\mathrm{I}_{\text {SOURCE }}=20 \mu \mathrm{~A}$ |  | 10 | 14 |  | 10 | 14 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 20 |  |  | 20 | mV |
| $\mathrm{V}_{\text {OL }}$ - $\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$ |  | 40 | 55 |  | 40 | 55 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 80 |  |  | 80 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$ | $\mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA}$ |  | 80 | 110 |  | 80 | 110 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | 160 |  |  | 160 | mV |
| $\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$ |  | 300 | 500 |  | 300 | 500 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 1000 |  |  | 1000 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {OH }}$ | $\mathrm{I}_{\text {Source }}=15 \mathrm{~mA}$ |  | 800 | 1500 |  | 800 | 1500 | mV |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | 1900 |  |  | 1900 | mV |
| Operating Output Current |  | 15 |  |  | 15 |  |  | mA |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 12 |  |  | 12 |  |  | mA |
| Capacitive Load Drive |  |  | 350 |  |  | 350 |  |  |
| POWER SUPPLY |  |  |  |  |  |  |  |  |
| Quiescent Current, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {Max }}$ |  |  | 1.3 | 1.6 |  | 1.3 | 1.6 | mA |
| Power Supply Rejection | $\mathrm{V}_{\text {SY }}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | 66 | 80 |  | 70 | 80 |  | dB |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 66 |  |  | 70 |  |  | dB |

${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ( $\mathrm{V}+-1 \mathrm{~V}$ ) to $\mathrm{V}+$. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
${ }^{2} \mathrm{~V}_{\text {OL }}-\mathrm{V}_{\mathrm{EE}}$ is defined as the difference between the lowest possible output voltage ( $\mathrm{V}_{\text {oL }}$ ) and the negative voltage supply rail ( $\mathrm{V}_{\text {EE }}$ ). $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {OH }}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$.

## AD822

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, Vout $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

| Parameter | Conditions | A Grade |  |  | B Grade |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| DC PERFORMANCE |  |  |  |  |  |  |  |  |
| Initial Offset |  |  | 0.4 | 2 |  | 0.3 | 1.5 | mV |
| Maximum Offset Over Temperature |  |  | 0.5 | 3 |  | 0.5 | 2.5 | mV |
| Offset Drift |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  | 2 | 25 |  | 2 | 12 | pA |
|  | $\mathrm{V}_{\text {cm }}=-10 \mathrm{~V}$ |  | 40 |  |  | 40 |  | pA |
| At $\mathrm{T}_{\text {max }}$ | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  | 0.5 | 5 |  | 0.5 | 2.5 | nA |
| Input Offset Current |  |  | 2 | 20 |  | 2 | 12 | pA |
| At Tmax |  |  | 0.5 |  |  | 0.5 |  | nA |
| Open-Loop Gain | $\mathrm{V}_{\text {Out }}=-10 \mathrm{~V}$ to +10 V |  |  |  |  |  |  |  |
|  | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ | 500 | 2000 |  | 500 | 2000 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 500 |  |  | 500 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | 100 | 500 |  | 100 | 500 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 100 |  |  | 100 |  |  | $\mathrm{V} / \mathrm{mV}$ |
|  | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 30 | 45 |  | 30 | 45 |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 20 |  |  | 20 |  |  | $\mathrm{V} / \mathrm{mV}$ |
| NOISE/HARMONIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Input Voltage Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 2 |  |  | 2 |  | $\mu \mathrm{V}$ p-p |
| $\mathrm{f}=10 \mathrm{~Hz}$ |  |  | 25 |  |  | 25 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=100 \mathrm{~Hz}$ |  |  | 21 |  |  | 21 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 16 |  |  | 16 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 13 |  |  | 13 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| Input Current Noise |  |  |  |  |  |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  |  | 18 |  |  | 18 |  | fA p-p |
| $\mathrm{f}=1 \mathrm{kHz}$ |  |  | 0.8 |  |  | 0.8 |  | $f \mathrm{f} / \sqrt{ } \mathrm{Hz}$ |
| Harmonic Distortion $\mathrm{f}=10 \mathrm{kHz}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$ |  | -85 |  |  | -85 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |  |  |
| Unity-Gain Frequency |  |  | 1.9 |  |  | 1.9 |  | MHz |
| Full Power Response | $V_{\text {out }} \mathrm{p}-\mathrm{p}=20 \mathrm{~V}$ |  | 45 |  |  | 45 |  | kHz |
| Slew Rate |  |  | 3 |  |  | 3 |  | V/ $\mu \mathrm{s}$ |
| Settling Time |  |  |  |  |  |  |  |  |
| to 0.1\% | $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ |  | 4.1 |  |  | 4.1 |  | $\mu \mathrm{s}$ |
| to $0.01 \%$ | Vout $=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ |  | 4.5 |  |  | 4.5 |  | $\mu \mathrm{s}$ |
| MATCHING CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Initial Offset |  |  |  | 3 |  |  | 2 | mV |
| Maximum Offset Over Temperature |  |  |  | 4 |  |  | 2.5 | mV |
| Offset Drift |  |  | 3 |  |  | 3 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current |  |  |  | 25 |  |  | 12 | pA |
| Crosstalk @ f= 1 kHz | $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ |  | -130 |  |  | -130 |  | dB |
| Crosstalk @ f $=100 \mathrm{kHz}$ | $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ |  | -93 |  |  | -93 |  | dB |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Input Voltage Range ${ }^{1}$, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | -15.2 |  | +14 | -15.2 |  | +14 | V |
| Common-Mode Rejection Ratio (CMRR) | $\mathrm{V}_{\text {cM }}=-15 \mathrm{~V}$ to +12 V | 70 | 80 |  | 74 | 90 |  | dB |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | $\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to +12 V | 70 |  |  | 74 |  |  | dB |
| Input Impedance |  |  |  |  |  |  |  |  |
| Differential |  |  | $10^{13} \mid 0.5$ |  |  | $10^{13}\| \| 0.5$ |  | $\Omega \\| \mathrm{pF}$ |
| Common Mode |  |  | $10^{13}\| \| 2.8$ |  |  | $10^{13} \mid 2.8$ |  | $\Omega \\| \mathrm{pF}$ |


| Parameter | Conditions | A Grade |  |  | B Grade |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |  |  |
| Output Saturation Voltage ${ }^{2}$ |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=20 \mu \mathrm{~A}$ |  | 5 | 7 |  | 5 | 7 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 10 |  |  | 10 | mV |
| $\mathrm{V}_{\text {cC }}-\mathrm{V}_{\text {он }}$ | $\mathrm{I}_{\text {SoURCE }}=20 \mu \mathrm{~A}$ |  | 10 | 14 |  | 10 | 14 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 20 |  |  | 20 | mV |
| $\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$ |  | 40 | 55 |  | 40 | 55 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | 80 |  |  | 80 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$ | $I_{\text {SOURCE }}=2 \mathrm{~mA}$ |  | 80 | 110 |  | 80 | 110 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | 160 |  |  | 160 | mV |
| $\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$ |  | 300 | 500 |  | 300 | 500 | mV |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  |  |  | 1000 |  |  | 1000 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {он }}$ | $\mathrm{ISOURCE}=15 \mathrm{~mA}$ |  | 800 | 1500 |  | 800 | 1500 | mV |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  |  | 1900 |  |  | 1900 | mV |
| Operating Output Current |  | 20 |  |  | 20 |  |  | mA |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 15 |  |  | 15 |  |  | mA |
| Capacitive Load Drive |  |  | 350 |  |  | 350 |  | pF |
| POWER SUPPLY |  |  |  |  |  |  |  |  |
| Quiescent Current, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 1.4 | 1.8 |  | 1.4 | 1.8 | mA |
| Power Supply Rejection | $\mathrm{V}_{5 Y}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | 70 | 80 |  | 70 | 80 |  | dB |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 70 |  |  | 70 |  |  | dB |

${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+-1V) to $\mathrm{V}+$. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
${ }^{2} V_{O L}-V_{E E}$ is defined as the difference between the lowest possible output voltage ( $V_{O L}$ ) and the negative voltage supply rail ( $\mathrm{V}_{\mathrm{EE}}$ ). $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {OH }}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$.

## AD822

$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, 3 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V}$, unless otherwise noted.
Table 4.

| Parameter | Conditions | Typ | Unit |
| :---: | :---: | :---: | :---: |
| DC PERFORMANCE |  |  |  |
| Initial Offset | V cm $=0 \mathrm{~V}$ to 2 V | 0.2 | mV |
| Maximum Offset Over Temperature |  | 0.5 | mV |
| Offset Drift |  | 1 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current |  | 2 | pA |
| At $\mathrm{T}_{\text {max }}$ |  | 0.5 | nA |
| Input Offset Current |  | 2 | pA |
| At $\mathrm{T}_{\text {max }}$ |  | 0.5 | nA |
| Open-Loop Gain | $\mathrm{V}_{\text {out }}=0.2 \mathrm{~V}$ to 2 V |  |  |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ | 1000 | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | 150 | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{RL}=1 \mathrm{k} \Omega$ | 30 | $\mathrm{V} / \mathrm{mV}$ |
| NOISE/HARMONIC PERFORMANCE Input Voltage Noise |  |  |  |
|  |  |  |  |  |
| 0.1 Hz to 10 Hz |  | 2 | $\mu \mathrm{V}$ p-p |
| $\mathrm{f}=10 \mathrm{~Hz}$ |  | 25 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=100 \mathrm{~Hz}$ |  | 21 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=1 \mathrm{kHz}$ |  | 16 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}=10 \mathrm{kHz}$ |  | 13 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| Input Current Noise |  |  |  |
| $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz |  | 18 | fA p-p |
| $\mathrm{f}=1 \mathrm{kHz}$ |  | 0.8 | $\mathrm{fA} / \sqrt{ } \mathrm{Hz}$ |
| Harmonic Distortion $\mathrm{f}=10 \mathrm{kHz}$ | $\begin{aligned} & \mathrm{R} \mathrm{~L}=10 \mathrm{k} \Omega \text { to } 1.5 \mathrm{~V} \\ & \text { Vout }= \pm 1.25 \mathrm{~V} \end{aligned}$ | -92 | dB |
| DYNAMIC PERFORMANCE |  |  |  |
| Unity-Gain Frequency |  | 1.5 | MHz |
| Full Power Response | Vout p-p $=2.5 \mathrm{~V}$ | 240 | kHz |
| Slew Rate |  | 3 | V/ $/ \mathrm{s}$ |
| Settling Time |  |  |  |
| to 0.1\% | $\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ to 2.5 V | 1 | $\mu \mathrm{s}$ |
| to 0.01\% |  | 1.4 | $\mu \mathrm{s}$ |
| MATCHING CHARACTERISTICS |  |  |  |
| Offset Drift |  | 2 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Crosstalk @ $\mathrm{f}=1 \mathrm{kHz}$ | $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ | -130 | dB |
| Crosstalk @ f= 100 kHz | $\mathrm{RL}=5 \mathrm{k} \Omega$ | -93 | dB |
| INPUT CHARACTERISTICS |  |  |  |
| Common-Mode Rejection Ratio (CMRR), $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 1 V | 74 | dB |
| Input Impedance |  |  |  |
| Differential |  | $10^{13}\| \| 0.5$ | $\Omega \\| \mathrm{pF}$ |
| Common Mode |  | $10^{13}\| \| 2.8$ | $\Omega \\| \mathrm{pF}$ |


| Parameter | Conditions | Typ | Unit |
| :---: | :---: | :---: | :---: |
| OUTPUT CHARACTERISTICS |  |  |  |
| Output Saturation Voltage ${ }^{1}$ |  |  |  |
| $\mathrm{V}_{\text {OL }}$ - $\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=20 \mu \mathrm{~A}$ | 5 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$ | $\mathrm{I}_{\text {SOURCE }}=20 \mu \mathrm{~A}$ | 10 | mV |
| Vol - $\mathrm{V}_{\text {EE }}$ | $\mathrm{I}_{\text {SIINK }}=2 \mathrm{~mA}$ | 40 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$ | $\mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA}$ | 80 | mV |
| $V_{\text {OL }}-V_{\text {EE }}$ | $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$ | 200 | mV |
| $\mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {or }}$ | $\mathrm{Isource}=10 \mathrm{~mA}$ | 500 | mV |
| Capacitive Load Drive |  | 350 | pF |
| POWER SUPPLY |  |  |  |
| Quiescent Current, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ |  | 1.24 | mA |
| Power Supply Rejection, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ | $\mathrm{V}_{S Y}=3 \mathrm{~V}$ to 15 V | 80 | dB |

${ }^{1} V_{O L}-V_{E E}$ is defined as the difference between the lowest possible output voltage ( $V_{O L}$ ) and the negative voltage supply rail ( $\mathrm{V}_{\mathrm{EE}}$ ). $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\text {он }}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{Cc}}\right)$. Specifications are $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max. }}$.

## ABSOLUTE MAXIMUM RATINGS

Table 5.

| Parameter | Rating |
| :--- | :--- |
| Supply Voltage | $\pm 18 \mathrm{~V}$ |
| Internal Power Dissipation |  |
| $\quad$ 8-Lead PDIP (N) | Observe derating curves |
| 8-Lead SOIC_N (R) | Observe derating curves |
| 8-Lead MSOP (RM) | Observe derating curves |
| Input Voltage | $((\mathrm{V}+)+0.2 \mathrm{~V})$ to |
|  | $-(20 \mathrm{~V}+(\mathrm{V}+))$ |
| Output Short-Circuit Duration | Indefinite |
| Differential Input Voltage | $\pm 30 \mathrm{~V}$ |
| Storage Temperature Range (N) | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range (R, RM) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range |  |
| $\quad$ A Grade and B Grade | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Lead Temperature | $260^{\circ} \mathrm{C}$ |
| $\quad$ (Soldering, 60 sec) |  |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\mathrm{JA}}$ | Unit |
| :--- | :--- | :--- |
| 8-lead PDIP (N) | 90 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-lead SOIC_N (R) | 160 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-lead MSOP (RM) | 190 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

MAXIMUM POWER DISSIPATION
The maximum power that can be safely dissipated by the AD822 is limited by the associated rise in junction temperature. For plastic packages, the maximum safe junction temperature is $145^{\circ} \mathrm{C}$. If these maximums are exceeded momentarily, proper circuit operation is restored as soon as the die temperature is reduced. Leaving the device in the overheated condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves shown in Figure 27.
While the AD822 is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature is not exceeded under all conditions. With power supplies $\pm 12 \mathrm{~V}$ (or less) at an ambient temperature of $25^{\circ} \mathrm{C}$ or less, if the output node is shorted to a supply rail, then the amplifier is not destroyed, even if this condition persists for an extended period.

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

## AD822

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 52. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
( $\mathrm{N}-8$ )
Dimensions shown in inches and (millimeters)


ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option | Branding |
| :---: | :---: | :---: | :---: | :---: |
| AD822AN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead PDIP | N-8 |  |
| AD822ANZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead PDIP | N-8 |  |
| AD822AR | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822AR-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822AR-REEL7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822ARZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822ARZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822ARZ-REEL7 ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822ARM-R2 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead MSOP | RM-8 | B4A |
| AD822ARM-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead MSOP | RM-8 | B4A |
| AD822ARMZ-R2 ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead MSOP | RM-8 | \#B4A |
| AD822ARMZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead MSOP | RM-8 | \#B4A |
| AD822BR | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822BR-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822BR-REEL7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822BRZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822BRZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |
| AD822BRZ-REEL71 ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8-Lead SOIC_N | R-8 |  |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part, \# denotes RoHS-compliant product may be top or bottom marked.


[^0]:    ${ }^{1}$ This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ( $\mathrm{V}+-1 \mathrm{~V}$ ) to $\mathrm{V}+$. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
    ${ }^{2} \mathrm{~V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{EE}}$ is defined as the difference between the lowest possible output voltage $\left(\mathrm{V}_{\mathrm{OL}}\right)$ and the negative voltage supply rail ( $\mathrm{V}_{\mathrm{EE}}$ ). $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ is defined as the difference between the highest possible output voltage $\left(\mathrm{V}_{\text {OH }}\right)$ and the positive supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$.

