Emerson Network Power AC-DC and DC-DC Products

EMERSON
Network Power

Local Support

Our regional sales offices are ready to provide expert local applications and sales support. In addition, an extensive network of manufacturers' representatives and distributors bring our products to you. Please call for locations of sales offices near you or visit our website at www.powerconversion.com.

Americas (USA)

Telephone: +17609304600
Facsimile: +1 7609300698

Europe (UK)

Telephone: +44 (0) 1384842211
Facsimile: +44 (0) 1384843355

Asia (HK)

Telephone: +852 21763333
Facsimile: +852 21763888

Technical support:

+1 8884127832 (North America)
or +1 4072412752
08000321546 (in the UK)
+44 8000321546 (outside the UK)
Email:
techsupport.embeddedpower@emerson.com

Astec and Artesyn are now part of the Embedded Power business of Emerson Network Power - so you now have a single source for all the power conversion products that you need.
This shortform catalog lists key performance data for all standard Astec and Artesyn ac-dc power supplies and dc-dc converters. It is designed to provide you with a fast, easy-to-use means of identifying the ideal power source for your application.
Our standard Astec and Artesyn product lines offer thousands of configuration options, and are backed by extensive engineering facilities to meet your needs for modified and applicationspecific power conversion solutions.
After selecting the product that you need from this catalog, we recommend that you visit our website to obtain more detailed information. You will find that you can quickly download product datasheets and safety certificates, check stock levels at your favorite distributor, and request evaluation samples. You can even ask one of our experts for technical advice, or register for access to the 'My Power' portal, to actively participate in the development of future power conversion technology and products for your markets.
Check it out for yourself: www.powerconversion.com

About Emerson Network Power

Emerson Network Power is part of the global technology company, Emerson (NYSE:EMR). Its embedded power business is one of the world's largest and most successful power supply companies. It embraces the Astec and Artesyn brand names, employs some 27,000 people - including 1,300 professional engineers - and is active in every major country. The company operates strategically located design, support and sales facilities on every continent, and has five large-scale manufacturing sites three in China, and two in the Philippines.

Emerson Network Power produces world-class products, based on leading-edge technology, which deliver unmatched performance and long term value. These products are used extensively by OEMs and system integrators for diverse applications in the communications, computing, storage, business systems, test, instrumentation, medical and industrial equipment industries.

Contents

AC-DC Power Supplies

Low Power 3 W-500 W

Open frame/enclosed 1-4 outputs

External power adapters

Medical Power Up to 4860 W

1-21 outputs

Medium Power (MP) Up to 1200 W

1-10 outputs standard (up to 21 available) 16
Intelligent Medium Power (iMP) Up to 1500 W
Up to 21 outputs 19
Intelligent High Power (iVS) Up to 4860 W23
Bulk Power (HPS) 350 W-3000 W
Available 1 U and 3 U27
Compatible racks hold up to 4 modules
Distributed Power (DS) 450 W-1500 WAvailable 1U and 2 U29
Compatible racks hold up to 5 modules
DIN Rail (ADN) 24 V 60 W-960 WStandard DIN format with PFC33
SEMI F47 compatible
MicroTCA 600 W
MTC600 Series34
DC-DC Converters
ATCA Module
Bus Converters-ATCA AdvanceriTCA ${ }^{\circledR}$ 37
Industry Standard Isolated
Sixteenth-Brick 38
Eighth-Brick 39
Quarter-Brick 41
Half-Brick 43
RF Power Brick 45
Bus Converters 46
Industry Standard Non Isolated DC - DC Converters C-Class 47
E-Class 49
F-Class 50
POLA Products -1$]^{-1}$ 51
Memory Power 53
VRM Processor Power 53
High Power 300 V Input Products
Power Factor Correction (PFC) 54
300 V Full-Brick 54
300 V Half-Brick 54
Low Power/Industrial Products
Industrial DIP Packages 56
Industrial Standard Products 57
Ultra Low ProfileIsolated and non-isolated modules59
for low profile applications
Terms and Conditions 60
Index 62

Low Power

25-500 Watts

Special Features

All models feature:

- Industry standard footprints
- Wide-range AC input
- Full power to $50^{\circ} \mathrm{C}$
- High demonstrated MTBF
- Overvoltage protection
- Overload protection
- Built-in EMI Filtering
- Extensive safety approvals
- Derated operation to $70^{\circ} \mathrm{C}$

Many models feature:

- EN61000-3-2 Compliance
- Supervisory outputs ($5 \mathrm{~V} / 12 \mathrm{~V}$)
- Wide-adjust floating 4th output
- Single wire current share
- Medical approvals
- Remote sense
- Adjustable outputs
- Power fail
- Wide-adjust on single output models

Output Power	Output					
[Forced Air] Free Air	V1	V2	V3	V4	Size W \times LxH (mm)	Model
[25 W] 25 W	NLP25 Series					
	5 V @ 5 A*				2.07 " x 4" x 0.91"	NLP25-7605J
	12 V @ 2.1 A				(52.57 x 101.6 $\times 23.2$)	NLP25-7612J
	24 V @ $1.0 \mathrm{~A}^{*}$					NLP25-7624J
	48 V @ $0.5 \mathrm{~A}^{*}$					NLP25-7617J
[20 W] 20 W	5 V @ 2 A	12 V @ 0.8 A				NLP25-7629J
	5 V @ 2 A	12V@0.8 A	-5 V @ 0.1 A			NLP25-7607J
	5 V @ 2 A	$12 \mathrm{~V} @ 0.8 \mathrm{~A}$	-12 V @ 0.1 A			NLP25-7608J
[40 W] 25 W LP20 Series						
(1)	5V@5A[8A]*				$3^{\prime \prime} \times 5^{\prime \prime} \times 1.2^{\prime \prime}$	LPS22
	$12 \mathrm{~V} @ 2.1 \mathrm{~A}[3.3 \mathrm{~A}]^{*}$				$(76.2 \times 127 \times 30.5)$	LPS23
	$15 \mathrm{~V} @ 1.7 \mathrm{~A}[2.7]^{*}$					LPS24
	24 V @ 1.1 A 1.8 A$]^{*}$					LPS25
	5 V @ $3 \mathrm{~A}[4 \mathrm{~A}]$	12 V @ $1.5 \mathrm{~A}[2 \mathrm{~A}]$	-12 V @ 0.5 A [0.7 A]			LPT22
	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	12 V @ $0.5 \mathrm{~A}[0.7 \mathrm{~A}]$	-12 V @ 0.5 A [0.7 A]			LPT23
	5 V @ $3 \mathrm{~A}[4 \mathrm{~A}]$	12 V @ $1.5 \mathrm{~A}[2 \mathrm{~A}]$	-5 V @ 0.5 A [0.7 A]			LPT24
	5 V @ $3 \mathrm{~A}[4 \mathrm{~A}]$	15 V @ 1.5 A [2 A]	-15 V @ 0.5 A [0.7 A]			LPT25
[47 W] Enclosed	LCT43-E					
	5 V @ 4 A [7 A]	12 V @ 1 A [1.2 A]	-12 V @ 0.5 A [0.5 A]		$\begin{gathered} 3.2^{\prime \prime} \times 6.2 " \times 1.5^{\prime \prime} \\ (81.3 \times 157.5 \times 38.1) \end{gathered}$	LCT43-E
[50 W] 40 W NLP40 Series						
(1)	3.3 V @ $9 \mathrm{~A}^{*}$				$2.5^{\prime \prime} \times 4.25$ " $\times 1.15{ }^{\prime \prime}$	NLP40-76S3J
	5 V @ 9 A*				$(63.5 \times 108 \times 29.2)$	NLP40-7605J
	12 V @ $4 \mathrm{~A}^{*}$					NLP40-7612J
	15 V @ $3.3 \mathrm{~A}^{*}$					NLP40-7615J
	24 V @ $2 \mathrm{~A}^{*}$					NLP40-7624J
	48 V @ $1 \mathrm{~A}^{*}$					NLP40-7617J
	5 V @ 4.5 A	12V@3A				NLP40-7629J
	12 V @ 2.1 A	-12 V @ 2.1 A				NLP40-7627J
	3.3 V @ 4.5 A	12V@3A	-12 V @ 0.5 A			NLP40-76T366J
	5 V @ 4.5 A	12V@3A	-12 V @ 0.5 A			NLP40-7608J
	5 V @ 4.5 A	15V@2A	-15 V @ 0.5 A			NLP40-7610J

Options:

[] Rating with 30 CFM of air
(1) Optional cover/enclosure Floating output

Output Power	Output					
[Forced Air] Free Air	V1	V2	V3	V4	Size W $\mathrm{LLxH}(\mathrm{mm}$)	Model
[50 W] 40 W	NFS40 Series					
	3.3 V @ $8 \mathrm{~A}^{*}$				$3^{\prime \prime} \times 5^{\prime \prime} \times 1.2^{\prime \prime}$	NFS40-76S3J
	5.1 V @ $8 \mathrm{~A}^{*}$				$(76.2 \times 127 \times 30.5)$	NFS40-7605J
	12 V @ $4 \mathrm{~A}^{*}$					NFS40-7612J
	15 V @ $3.3 \mathrm{~A}^{*}$					NFS40-7615J
	24 V @ 2 A*					NFS40-7624J
	5.1V@ 5 A	12V@ 0.5 A	-12 V @ 0.5 A			NFS40-7628J
	5.1 V @ 5 A	12V@2A	-5V@0.5 A			NFS40-7607J
(1)	5.1 V @ 5 A	12 V @ 2 A	-12 V @ 0.5 A			NFS40-7608J
	5.1V@ 5 A	12 V @ 2 A	-15 V @ 0.5 A			NFS40-7610J

[50 W] 40 W NFS40 Series - Medical

	12 V @ 4 A*			$3^{\prime \prime} \times 5^{\prime \prime} \times 1.2^{\prime \prime}$	NFS40-7912J
	15 V @ $3.3 \mathrm{~A}^{*}$			$(76.2 \times 127 \times 30.5)$	NFS40-7915J
	24V@2 A*				NFS40-7924J
	5.1 V @ 7 A	12V@1A	-12 V @ 1 A		NFS40-7928J
	5.1 V @ 5 A	12V@2A	-12 V @ 0.5 A		NFS40-7908J
	5.1 V @ 5 A	15V@2A	-15 V @ 0.5 A		NFS40-7910J
[55 W] 40 W	LP40 Series				
	3.3 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{*}$			$3^{\prime \prime} \times 5^{\prime \prime} \times 1.2^{\prime \prime}$	LPS41
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{*}$			$(76.2 \times 127 \times 30.5)$	LPS42
	12 V @ 3.3 A 4.5$]^{*}$				LPS43
	15 V @ 2.6 A 3.6 A$]^{*}$				LPS44
\cdots	24 V @ 1.6 A 2.3 A$]^{*}$				LPS45
	48 V @ 0.9 A 1.2 A$]^{*}$				LPS48
	3.3 V @ $4 \mathrm{~A}[7 \mathrm{~A}]$	5 V @ $1.5 \mathrm{~A}[2 \mathrm{~A}]$	+12 V @ 0.5 A [0.7 A]		LPT41
SH_{3}	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	12 V @ 2 A [2.5 A]	-12 V @ 0.5 A [0.7 A]		LPT42
(1)	5 V @ $6 \mathrm{~A}[8 \mathrm{~A}]$	12 V @ $0.5 \mathrm{~A}[0.7 \mathrm{~A}]$	-12 V @ $0.5 \mathrm{~A}[0.7 \mathrm{~A}]$		LPT43
	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	12 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-5 V @ 0.5 A [0.7 A]		LPT44
	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	15 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-15 V @ 0.5 A [0.7 A]		LPT45
	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	24 V @ 1 A [1.5 A]	+12 V @ 0.5 A[0.7 A]		LPT46
[55 W] 40 W	LP40-M Series	- Medical			
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{*}$			$3^{\prime \prime} \times 5^{\prime \prime} \times 1.2^{\prime \prime}$	LPS42-M
	12 V @ 3.3 A 4.5$]^{*}$			$(76.2 \times 127 \times 30.5)$	LPS43-M
2	15 V @ 2.6 A 3.6 A$]^{*}$				LPS44-M
+ @	24 V @ 1.6 A 2.3 A$]^{*}$				LPS45-M
- ${ }^{\circ}$	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	12 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-12 V @ 0.5 A [0.7 A]		LPT42-M
(1)	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]$	15 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-15 V @ 0.5 A [0.7 A]		LPT45-M
[50 W] 50 W	LP50 Series				
	3.3V@8A	5 V @ 3 A	12 V @ 0.5 A	$2^{\prime \prime} \times 4^{\prime \prime} \times 1.3^{\prime \prime}$	LPT51
	5 V @ 8 A	12 V @ 3 A	-12 V @ 0.5 A	$(50.8 \times 101.6 \times 33)$	LPT52
	5 V @ 8 A	15V@2.4 A	-15 V @ 0.5 A		LPT53
(1)	5 V @ 8 A	24V@1.5 A	12 V @ 0.5 A		LPT54
[60 W] 60 W	5 V @ 11 A				LPS52 (1)
	12 V @ $5 \mathrm{~A}^{*}$				LPS53
	15 V @ $4 \mathrm{~A}^{*}$				LPS54
	24 V @ $2.5 \mathrm{~A}^{*}$				LPS55
(1)	48 V @ $1.25 \mathrm{~A}^{*}$				LPS58

[^0]

[^1][] Rating with 30 CFM of air
(1) Optional cover/enclosure
(5) These models feature harmonic current correction to EN61000-3-2 * Floating output

Output Power	Output					
[Forced Air] Free Air	V1	V2	V3	V4	Size W x LxH (mm)	Model
[80 W] 60 W	LP60 Series					
	3.3 V @ 12 A [16 A]*				$3 " \times 5$ " $\times 1.65{ }^{\prime \prime}$	LPS61
	5 V @12 A ${ }^{\text {16 A] }}$ *				($76.2 \times 127 \times 41.9$)	LPS62
	12 V @ $5 \mathrm{~A}[6.7 \mathrm{~A}]^{*}$					LPS63
	15 V @ $4 \mathrm{~A}[5.3 \mathrm{~A}]^{*}$					LPS64
	24V@2.5 A[3.3 A]*					LPS65
	48 V @ 1.3 A 1.7 A$]^{*}$					LPS68
	3.3 V @ $5 \mathrm{~A}[8.5 \mathrm{~A}]$	5 V @ $2.5 \mathrm{~A}[3 \mathrm{~A}]$	+12 V @ 0.5 A [1 A]			LPT61
	5 V @ 7 A [8 A]	12 V @ $3 \mathrm{~A}[3.5 \mathrm{~A}]$	-12 V @ 0.7 A[1 A]			LPT62
	5 V @ $7 \mathrm{~A}[8 \mathrm{~A}]$	15 V @ $2.8 \mathrm{~A}[3.3 \mathrm{~A}]$	-15 V @ 0.7 A [1 A]			LPT63
	5 V @ 7 A [8 A]	12 V @ $3 \mathrm{~A}[3.5 \mathrm{~A}$]	-5 V @ 0.7 A [1 A]			LPT64
	5 V @ 7 A [8 A]	24 V @ 1.5 A [2 A]	+12 V @ 0.7 A [1 A]			LPT65

[80 W] 60 W LP60-M Series - Medical

$12 \mathrm{~V} @ 5 \mathrm{~A}[6.7 \mathrm{~A}]^{*}$	$3^{\prime \prime} \times 5^{\prime \prime} \times 1.65 "$	LPS63-M	
$15 \mathrm{~V} @ 4 \mathrm{~A}[5.3 \mathrm{~A}]^{*}$		$(76.20 \times 127 \times 41.9)$	LPS64-M
$24 \mathrm{~V} @ 2.5 \mathrm{~A}[3.3 \mathrm{~A}]^{*}$		LPS65-M	
$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]$	$12 \mathrm{~V} @ 3 \mathrm{~A}[3.5 \mathrm{~A}]$	$-12 \mathrm{v} @ 0.7 \mathrm{~A}[1 \mathrm{~A}]$	LPT62-M
$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]$	$15 \mathrm{~V} @ 2.8 \mathrm{~A}[3.3 \mathrm{~A}]$	$-15 \mathrm{~V} @ 0.7 \mathrm{~A}[1 \mathrm{~A}]$	LPT63-M

[85 W] 60 W LP80 Series

	$\begin{aligned} & 3.3 \mathrm{~V} @ 8 \mathrm{~A}[13 \mathrm{~A}] \\ & (1.8 \mathrm{~V}-3.5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} @ 4 \mathrm{~A}[13 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5.5 \mathrm{~V}) \end{aligned}$	+12 V @ $0.7 \mathrm{~A}[1 \mathrm{~A}]$	$\begin{gathered} 3^{\prime \prime} \times 5 \text { " x } 1.29 " \\ (76.2 \times 127 \times 82.8) \end{gathered}$	LPT81
	$\begin{aligned} & 5 \mathrm{~V} @ 8 \mathrm{~A}[13 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{aligned}$	12 V @ $3 \mathrm{~A}[4 \mathrm{~A}]$	-12 V @ 0.7 A[1 A]		LPT82
(1)	$\begin{aligned} & 5 \mathrm{~V} @ 8 \mathrm{~A}[13 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{aligned}$	15 V @ 2.4 A [3.2 A]	-15 V @ 0.7 A [1 A]		LPT83

[110 W] 80 W LP110 Series

(1), (2)	12 V @ 6.7 A [9.2 A]*				4" x 7" x 1.8"	LPS113
	15V@5.3 A 7.3 A$]^{*}$				$(101.6 \times 177.8 \times 45.7)$	LPS114
	24 V @ 3.3 A 4.6 A$]^{*}$					LPS115
	48 V @ 1.7 A [2.3 A]*					LPS118
	5 V @ $9 \mathrm{~A}[11 \mathrm{~A}]$	12 V @ $4.5 \mathrm{~A}[5 \mathrm{~A}]$	-12 V @ 0.7 A [1 A]	$\pm 5-25 \mathrm{~V}$ @ $2.5 \mathrm{~A}[3 \mathrm{~A}]^{*}$		LPQ112
	5 V @ 9 A [11 A]	15 V @4.5 A[5 A]	-15V@0.7 A [1 A]	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{*}$		LPQ113
	5 V @ 9 A [11 A]	12 V @ 4.5 A [5 A]	-12 V @ 0.7 A [1 A]	24 V @ $3.5 \mathrm{~A}[4.5 \mathrm{~A}]$		LPQ114

[110 W] 80 W NFS80 Series

$5 \mathrm{~V} @ 15 \mathrm{~A}$	$24 \mathrm{~V} @ 2.5 \mathrm{~A}$	$12 \mathrm{~V} @ 3 \mathrm{~A}$	$12 \mathrm{~V} @ 3 \mathrm{~A}^{*}$	$4.25^{\prime \prime} \times 7^{\prime \prime} \times 1.8^{\prime \prime}$	$\mathrm{NFS80-7602J}$
$5 \mathrm{~V} @ 15 \mathrm{~A}$	$24 \mathrm{~V} @ 2.5 \mathrm{~A}$	$15 \mathrm{~V} @ 3 \mathrm{~A}$	$15 \mathrm{~V} @ 3 \mathrm{~A}^{*}$	$(107.95 \times 177.8 \times 45.72)$	$\mathrm{NFS} 80-7606 \mathrm{~J}$

[110 W] 80 W NLP110 Series

5 V @ 22 A*			$3 " \times 6.5^{\prime \prime} \times 1.26 "$	NLP110-9605J ${ }^{(5)}$
12 V @ 9.2 A*			$(76.2 \times 165.1 \times 32)$	NLP110-9612 ${ }^{(5)}$
24 V @ $4.6 \mathrm{~A}^{*}$				NLP110-9624J ${ }^{(5)}$
48 V @ 2.3 A*				NLP110-9617J ${ }^{(5)}$
5V@18A	3.3 V @ 20 A	12 V @ 1 A		NLP110-9693J ${ }^{(5)}$
12 V @ 8.5 A	5V@18A	-12 V @ 1 A		NLP110-9608J ${ }^{(5)}$

[^2]
[130 W] 80 W LP120 Series

3.3 V @ 16 A [26 A]*		$3 " \times 5 " \times 1.29 "$	LPS121
5V@16A [26A]*		(101.6×177.8×38.1)	LPS122
$12 \mathrm{~V} @ 6.6 \mathrm{~A}$ [10.8 A]*			LPS123
15 V @ 5.3 A 8.6 A$]^{*}$			LPS124
24 V @ 3.4 A [5.4 A]*			LPS125
48 V @ 1.7 A [2.7 A]*			LPS128
LP140 Series			
$\begin{aligned} & 5 \mathrm{~V} @ 12 \mathrm{~A}[25 \mathrm{~A}] \quad 12 \mathrm{~V} @ 5 \mathrm{~A}[6 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{aligned}$	$\begin{array}{ll} -12 \mathrm{~V} @ 1 \mathrm{~A}[1.5 \mathrm{~A}] & \pm 3.3-25 \mathrm{~V} @ \\ (-12 \mathrm{~V}-15 \mathrm{~V}) & 1.5 \mathrm{~A}[4.5 \mathrm{~A}]^{*} \end{array}$	$\begin{gathered} 4^{" \times 7 " \times 1.5 "} \\ (101.6 \times 177.8 \times 38.1) \end{gathered}$	LPQ142

[150 W] 100 W	TLP150 Series		
	12 V @ $12.5 \mathrm{~A}^{*}$	$3 \times 5 \times 1.25$	TLP150R-96S12 ${ }^{(5)} \mathrm{F}$
	24 V @ $6.3 \mathrm{~A}^{*}$	($76.2 \times 127 \times 31.75$)	TLP150R-96S24 ${ }^{(5)} \mathrm{F}$
	36V@4.2 A*		TLP150R-96S36J ${ }^{(5)}$
(1)	48 V @ 3.2 A*		TLP150R-96S48J ${ }^{(5)} \mathrm{F}$

Options:

P Power fail detect option available, please add the suffix "P" to the model; e.g. NFS110-7601PJ
[]Rating with 30 CFM of air
(1) Optional cover/enclosure

* Floating output
(5) These models feature harmonic current correction to EN61000-3-2

Output Power	Output					
[Forced Air] Free Air	V1	V2	V3	V4	Size WxLxH (mm)	Model
[150 W] 100 W TLP150 Series - Medical						
	12 V @ $12.5 \mathrm{~A}^{*}$				$3 \times 5 \times 1.25$	TLP150N-99S12J ${ }^{(5)} \mathrm{F}$
	24V@6.3 A*				($76.2 \times 127 \times 31.75$)	TLP150N-99S24J ${ }^{(5)} \mathrm{F}$
[150 W] 110 W	NLP150 Series					
	3.3 V @ $30 \mathrm{~A}^{*}$					NLP150L-96S93J ${ }^{(5)}$
	12 V @ $12.5 \mathrm{~A}^{*}$				$3.8 \times 6.8 \times 1.26$	NLP150L-96S6J ${ }^{(5)}$
	24V@6.5 A*				$(96.52 \times 172.72 \times 32)$	NLP150L-9658J ${ }^{(5)}$
	48 V @ 3.2 A^{*}					NLP150L-9659J ${ }^{(5)}$
	5.1 V @ $30 \mathrm{~A}^{*}$					NLP150L-96S5J ${ }^{(5)}$
	5.1 V @ 30 A	3.3 V @ 15 A	12 V @ 3 A			NLP150L-96T536J ${ }^{(5)}$
	12 V @ 12.5 A	$5.1 \mathrm{~V} @ 8 \mathrm{~A}$	24V@3A			NLP150L-96T658J ${ }^{(5)}$
	5.1@30 A	3.3 V @ 15 A	12 V @ 3 A	12 V , iso@1 A	$3.80 \times 7.80 \times 1.26$	NLP150L-96Q5366J ${ }^{(5)}$
					(96.52x 198.12x32)	
[150 W] 110 W	LP150 Series					
	5 V @ 22 A [30 A]*				4.25 " $\times 8.5$ " $\times 1.5^{\prime \prime}$	LPS152
	$\begin{aligned} & 12 \mathrm{~V} @ 9.1 \mathrm{~A}[12.5 \mathrm{~A}]^{*} \\ & (12 \mathrm{~V}-15 \mathrm{~V}) \end{aligned}$				(108×215.9 $\times 38.1$)	LPS153
	$\begin{aligned} & 24 \mathrm{~V} @ 4.5 \mathrm{~A}[6.2 \mathrm{~A}]^{*} \\ & (24 \mathrm{~V}-28 \mathrm{~V}) \end{aligned}$					LPS155
	$5 \mathrm{~V} @ 15 \mathrm{~A}[22 \mathrm{~A}]$	12 V @ 2.6 A [8 A]	-12 V @ 2 A [2.5 A]	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{*}$		LPQ152
	5 V @ 15 A [22 A]	$15 \mathrm{~V} @ 4.8 \mathrm{~A}[6.4 \mathrm{~A}]$	-15V @ 1.6 A [2 A]	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{*}$		LPQ153
	5 V @ 15 A [22 A]	12 V @ $6 \mathrm{~A}[8 \mathrm{~A}]$	-12 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	24 V @ 3.5 A[4.5 A]		LPQ154
[165 W] 50 W	NTQ160 Series					
	$\begin{aligned} & 3.3 \mathrm{~V} @ 15 \mathrm{~A}[30 \mathrm{~A}] \\ & (1.8 \mathrm{~V}-3.5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} @ 10 \mathrm{~A}[20 \mathrm{~A}] \\ & (3 \mathrm{~V}-5.5 \mathrm{~V}) \end{aligned}$	12v@2 A [4.5 A]*	12 V @ 2 A [4.5 A]*	$\begin{gathered} 4.25 " \times 8.5 " \times 1.5 " \\ (108 \times 215.9 \times 38.1) \end{gathered}$	NTQ162
	$\begin{aligned} & 5 \mathrm{~V} @ 15 \mathrm{~A}[30 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{aligned}$	3.3 V @ 10 A [20 A]	12 V @ $2 \mathrm{~A}[4.5 \mathrm{~A}]^{*}$	12 V @ 2 A [4.5]*		NTQ163
	$\begin{aligned} & 3.3 \mathrm{~V} @ 15 \mathrm{~A}[30 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~V} @ 10 \mathrm{~A}[20 \mathrm{~A}] \\ & (1.8 \mathrm{~V}-3.5 \mathrm{~V}) \end{aligned}$	5 V @ $2 \mathrm{~A}[4 \mathrm{~A}]^{*}$	12 V @ $2 \mathrm{~A}[4 \mathrm{~A}]^{*}$		NTQ165
[175 W] 110 W	LP170 Series					
	$\begin{aligned} & 5 \mathrm{~V} @ 22 \mathrm{~A}[35 \mathrm{~A}]^{*} \\ & (2.5 \mathrm{~V}-6 \mathrm{~V}) \end{aligned}$				$\begin{gathered} 4.25 \times 8.5 \times 1.5 \\ (108 \times 215.9 \times 38.1) \end{gathered}$	LPS172
	$\begin{aligned} & 12 \mathrm{~V} @ 9.1 \mathrm{~A}[15 \mathrm{~A}]^{*} \\ & (6 \mathrm{~V}-12 \mathrm{~V}) \end{aligned}$					LPS173
	$\begin{aligned} & 15 \mathrm{~V} @ 7.3 \mathrm{~A}[12 \mathrm{~A}]^{*} \\ & (12 \mathrm{~V}-24 \mathrm{~V}) \end{aligned}$					LPS174
	$\begin{aligned} & 24 \mathrm{~V} @ 4.5 \mathrm{~A}[7.5]^{*} \\ & (24 \mathrm{~V}-54 \mathrm{~V}) \end{aligned}$					LPS175
	$\begin{aligned} & 5 \mathrm{~V} @ 15 \mathrm{~A}[30 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5.5 \mathrm{~V}) \end{aligned}$	12 V @ 6 A [8A]	$\begin{aligned} & -12 \mathrm{~V} @ 0.2 \mathrm{~A}[3 \mathrm{~A}] \\ & (-12 \mathrm{~V}-15 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \pm 3.3-25 \mathrm{~V} @ 2 \mathrm{~A}[5 \\ & \mathrm{A}]^{*} \end{aligned}$		LPQ172
	$\begin{aligned} & 5 \mathrm{~V} @ 10 \mathrm{~A}[24 \mathrm{~A}] \\ & (3.3 \mathrm{~V}-5.5 \mathrm{~V}) \end{aligned}$	12 V @ 6 A [8A]	$\begin{aligned} & -12 \mathrm{~V} @ 1.2 \mathrm{~A}[3 \mathrm{~A}] \\ & (-12 \mathrm{~V}-15 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} @ 10 \mathrm{~A}[24 \mathrm{~A}]^{*} \\ & (3.3-5 \mathrm{~V}) \end{aligned}$		LPQ173
[175 W] 110 W LP170-M Series - Medical						
	$\begin{aligned} & 5 \mathrm{~V} @ 22 \mathrm{~A}[35 \mathrm{~A}]^{*} \\ & (2.5 \mathrm{~V}-6 \mathrm{~V}) \end{aligned}$				$\begin{gathered} 4.25^{\prime \prime} \times 8.5^{\prime \prime} \times 1.5^{\prime \prime} \\ (108 \times 215.9 \times 38.1) \end{gathered}$	LPS172-M
E.	$\begin{aligned} & 12 \mathrm{~V} @ 9.1 \mathrm{~A}[15 \mathrm{~A}]^{*} \\ & (6 \mathrm{~V}-12 \mathrm{~V}) \end{aligned}$					LPS173-M
(1) 8-2	$\begin{aligned} & 15 \mathrm{~V} @ 7.3 \mathrm{~A}[12 \mathrm{~A}]^{*} \\ & (12 \mathrm{~V}-24 \mathrm{~V}) \end{aligned}$					LPS174-M
	$\begin{aligned} & 24 \mathrm{~V} @ 4.5 \mathrm{~A}[7.5]^{*} \\ & (24 \mathrm{~V}-54 \mathrm{~V}) \end{aligned}$					LPS175-M

[^3](3) Optional fan cover (see data sheet for increased dimensions)
(5) These models feature harmonic current correction to EN61000-3-2 Floating output

Output					
V1	V2	V3	V4	Size WxLxH (mm)	Model

12 V @ 21 A*
$4 \times 7 \times 1.5$
NLP250R-96S12 $\mathrm{J}^{(5)}$
24 V @ $10.5 \mathrm{~A}^{*}$
$(101.6 \times 177.8 \times 38.1)$ NLP250R-96S24J ${ }^{(5)}$
48 V @ $5.3 \mathrm{~A}^{*}$
NLP250R-96S48J ${ }^{(5)}$
(1)

NLP250 Series - Medical
12 V @ 21 A*
$4 \times 7 \times 1.5$
NLP250N-99S12J ${ }^{(5)}$
24 V @ $10.5 \mathrm{~A}^{*}$
$(101.6 \times 177.8 \times 38.1)$ NLP250N-99S24J ${ }^{(5)}$

LP250 Series

[350 W]

(1), (3), (4)

LP350 Series

5 V (3-6 V)@ ${ }^{\text {[70 A] }}$			$5 " \times 9$ " 2.50	LPS352-C
$12 \mathrm{~V}(6-12 \mathrm{~V}) @[29.2 \mathrm{~A}]^{*}$			$(127 \times 228.6 \times 63.5)$	LPS353-C
$15 \mathrm{~V}(12-24 \mathrm{~V}) @[23.3 \mathrm{~A}]^{*}$				LPS354-C
$24 \mathrm{~V}(24-48 \mathrm{~V}) @[14.6 \mathrm{~A}]^{*}$				LPS355-C
5 V @ [50 A] 12 V @ [12 A]	-12 V @ [6 A]	$\pm 3.3-24 \mathrm{~V} @[6 \mathrm{~A}]^{*}$		LPQ352-C
5 V @ [50 A] 15V@ [12 A]	-15 V @ [6 A]	$\pm 3.3-24 \mathrm{~V} @[6 \mathrm{~A}]^{*}$		LPQ353-C

[350 W] 200 W
NTS350 Series

$12 \mathrm{~V} @ 16.6 \mathrm{~A}[29.2 \mathrm{~A}]^{*}$	$4 \mathrm{4} \times 7$ " $\times 1.5^{\prime \prime}$	NTS353
$24 \mathrm{~V} @ 8.3 \mathrm{~A}[14.6 \mathrm{~A}]^{*}$	$(101.6 \times 177.8 \times 38)$	NTS355
$48 \mathrm{~V} @ 4.2 \mathrm{~A}[7.3 \mathrm{~A}]^{*}$		NTS358

NTS500 Series
$12 \mathrm{~V} @ 16.6 \mathrm{~A}$ [41.7 A]
4" $\times 7$ " $\times 1.5^{\prime \prime}$
NTS503
$24 \mathrm{~V} @ 8.3 \mathrm{~A}[20.8 \mathrm{~A}]$
48 V @ 4.2 A [10.4 A]
$(101.6 \times 177.8 \times 38)$ NTS505

NTS500-M Series
$12 \mathrm{~V} @ 16.6 \mathrm{~A}[41.7 \mathrm{~A}]$
4" x 7" x $1.5^{\prime \prime}$
NTS503-M
$24 \mathrm{~V} @ 8.3 \mathrm{~A}[20.8 \mathrm{~A}]$
($101.6 \times 177.8 \times 38$)
$48 \mathrm{~V} @ 4.2 \mathrm{~A}$ [10.4 A]

Options:
[] Rating with 30 CFM of air
(4) Optional end fan cover (see data sheet for increased dimensions)
(1) Optional cover/enclosure (see data sheet for increased dimensions)
(3) Optional fan cover (see data sheet for increased dimensions)
(5) These models feature harmonic current correction to EN61000-3-2

10 For complete product specifications, technical reference notes and available product options, go to www.powerconversion.com.

External Power Adapters
 3-100 Watts

Special Features

All models feature:

- Wide-range AC input
- High demonstrated MTBF
- Overload protection
- Extensive safety approvals

Many models feature:

- EN61000-3-2 compliance
- Medical approvals
- Thermal protection
- Energy Star

AC Input Wallmount
U.S. - 2-prong

China - 2-prong
Europe - 2-prong
United Kingdom-3-prong
Australia - 2-prong
Freestanding
IEC320 2-pin (C14) \& (C6)
IEC320 2-pin (C8)

Single output 2.5 mm barrel plug 2.1 mm right angle plug - AD7216N2L

Triple output 5-pin DIN

V1	V2	v3	Size $\mathrm{W} \times \mathrm{LxH}(\mathrm{mm})$	Model
DCH3 Series				
5 V @ . 55 A			1.03 " $\times 2.28$ " $\times 2.44$ "	DCH3-050US-0001
5V@.55 A			$(26.1 \times 58.0 \times 62.0)$	DCH3-050US-0002
5 V @ . 55 A			1.03 " $\times 2.28$ " $\times 2.56$ "	DCH3-050EU-0001
5 V @ . 55 A			$(26.1 \times 58.0 \times 62.0)$	DCH3-050EU-0002
5 V @. 55 A			2.02 " 2.28 " $\times 1.79$ "	DCH3-050CH-0001
5 V @ . 55 A			$(51.2 \times 57.8 \times 45.5)$	DCH3-050CH-0002

5.5V@0.75A

$1.8^{\prime \prime} \times 2.4^{\prime \prime} \times 1^{\prime \prime}$	DA4-050US
$(45.8 \times 60 \times 26)$	
$2.23^{\prime \prime} \times 2.4^{\prime \prime} \times 1^{\prime \prime}$	DA4-050EU
$(58.3 \times 60 \times 26)$	
$1.8 \times 2.4^{\prime \prime} \times 1.0^{\prime \prime}$	DA4-050CH
$(45.8 \times 60 \times 76)$	

16 W
DA16 Series

| $+12 \mathrm{~V} @ 1.33 \mathrm{~A}$ | $2.08^{\prime \prime} \times 3.03^{\prime \prime} \times 1.17^{\prime \prime}$ | DA16-120US |
| :--- | :--- | :--- | :--- |
| $+12 \mathrm{~V} @ 1.33 \mathrm{~A}$ | $(53.0 \times 77.0 \times 29.8)$ | DA16-120EU |
| $+12 \mathrm{~V} @ 1.33 \mathrm{~A}$ | | DA16-120UK |
| +12 V @ 1.33 A | | DA16-120 AU |

SSL20C Series

5 V @ 4 A	2.40 " x 4.65" x 1.08"	SSL20C-7605J
12 V @ 1.67 A	$(60.96 \times 118.11 \times 27.43)$	SSL20C-7612J
15 V @ 1.34 A		SSL20C-7615J
18 V @ 1.11 A		SSL20C-7618J
$24 \mathrm{~V} @ 0.83 \mathrm{~A}$		SSL20C-7624J
48 V @ 0.42 A		SSL20C-7617J
SSL40C Series		
12 V @ 3.00 A	2.40 " $\times 4.65$ " $\times 1.08^{\prime \prime}$	SSL40C-7612J
15 V @ 2.66 A	$(60.96 \times 118.11 \times 27.43)$	SSL40C-7615J
18 V @ 2.22 A		SSL40C-7618J
24V@1.66 A		SSL40C-7624J
48 V @ 0.83 A		SSL40C-7617J
AD50 Series		
12 V @ 4.16 A	2.56 " $\times 4.72^{\prime \prime} \times 1.61^{\prime \prime}$	AD5012N2L
12 V @ 4.16 A	$(65 \times 120 \times 41)$	AD5012N3L

External Power Adapters

Output Power	V1	V2	V3	Size WxLxH (mm)	Model
50 W	AD50-M Series - Medical				
	12 V @ 4.16 A			2.56 " $\times 4.72$ " $\times 1.61$ "	AD5012N2LM
	12V@4.16 A			$(65 \times 120 \times 41)$	AD5012N3LM
50 W	DPT50 Series				
	3.3 V @ 9 A	5V@3A	-12 V @ 0.5 A	2.39 " $\times 5.24$ " $\times 1.62$ "	DPT51
	$5 \mathrm{~V} @ 8 \mathrm{~A}$	12 V @ 3 A	-12 V @ 0.5 A	$(60.7 \times 133 \times 41.15)$	DPT52
	5 V @ 8 A	15 V @ 2.4 A	-15V@0.5 A		DPT53
	5 V @ 8 A	24 V @ 1.5 A	$12 \mathrm{~V} @ 0.5 \mathrm{~A}$		DPT54
50 W	DPT50-M Series - Medical				
	3.3 V @ 9 A	5V@3A	-12V@0.5 A	2.39 " $\times 5.24$ " $\times 1.62^{\prime \prime}$	DPT51-M
	5V@8A	12V@3A	-12 V @ 0.5 A	$(60.7 \times 133 \times 41.15)$	DPT52-M
	5 V @ 8 A	15 V @ 2.4 A	-15V@0.5 A		DPT53-M
	5 V @ 8A	24 V @ 1.5 A	12 V @ 0.5 A		DPT54-M
60 W	DPS50 Series				
	5V@6A			2.39 " $\times 5.24$ " $\times 1.62$ "	DPS52
	12V@5A			$(60.7 \times 133 \times 41.15)$	DPS53
	15 V @ 4 A				DPS54
	24 V @ 2.5 A				DPS55
	48 V @ 1.25 A				DPS58
60 W	DPS50-M Series - Medical				
	5V@6A			2.39 " $\times 5.24$ " $\times 1.62$ "	DPS52-M
	12V@5A			$(60.7 \times 133 \times 41.15)$	DPS53-M
	15 V @ 4 A				DPS54-M
	24 V @ 2.5 A				DPS55-M
	48 V @ 1.25 A				DPS58-M

AD72 Series
+16 V @ 4.5 A
$2.0^{\prime \prime} \times 4.54^{\prime \prime} \times 1.10^{\prime \prime} \quad$ AD7216N2L
$(51 \times 115.4 \times 28)$

AD80 Series

+24 V @ 3.25 A
$3.13^{\prime \prime} \times 5.87$ " $\times 1.76^{\prime \prime}$
AD8024N3L-001
$(79.6 \times 149 \times 44)$

100 W

AD100 Series
48 V @ 2.08 A
2.56 " $\times 3.03^{\prime \prime} \times 1.44^{\prime \prime}$ AD10048P3L-001 $(65 \times 156 \times 37.2)$

Medical AC-DC Power Supplies Up to 4860 Watts

Emerson Network Power produces a wide range of AC-DC power supplies certified for use in medical equipment requiring lower safety ground leakage and higher isolation. The power supplies listed below are designed for use in non-patient critical applications: medical, dental and laboratory applications such as dialysis machines, monitoring equipment, instrumentation and infusion pump controls. All these power supplies are high efficiency switch-mode designs, and feature full medical safety approval to EN60601-1.

Special Features

All models feature:

- Industry standard footprints
- Wide-range AC input
- Remote sense
- Adjustable outputs
- Power fail
- Full power to $50^{\circ} \mathrm{C}$
- High demonstrated MTBF
- Overvoltage protection
- Overload protection
- Built-in EMI filtering
- Medical approvals
- Extensive safety approvals
- Derated operation to $70^{\circ} \mathrm{C}$

Many models feature:

- EN61000-3-2 compliance
- Supervisory outputs ($5 \mathrm{~V} / 12 \mathrm{~V}$)
- Wide-adjust floating 4th output
- Single wire current share
- Wide-adjust on single output models

Output Power	Output				Model
[Forced Air] Free Air	V1 V2	V3	V4	Size $\mathrm{W} \times \mathrm{LxH}(\mathrm{mm})$	
[50 W] 40 W	NFS40 Series - Medical				
	12V@4 ${ }^{*}$			$3 " \times 5$ " $\times 1.2$ "	NFS40-7912 J
	15 V @ $3.3 \mathrm{~A}^{*}$			$(127 \times 76.2 \times 30.5)$	NFS40-7915J
	24 V @ $2 \mathrm{~A}^{*}$				NFS40-7924J
	5 V @ 7 A 12V@1A	-12 V @ 1 A			NFS40-7928J
-	5.1V@5A 12V@2A	-12 V @ 0.5 A			NFS40-7908J
	5.1V@5A 15V@2A	-15 V @ 0.5 A			NFS40-7910J
[55 W] 40 W	LP40-M Series - Medical				
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{*}$			$3^{\prime \prime} \times 5$ " $\times 1.2^{\prime \prime}$	LPS42-M
\cdots	12 V @ 3.3 A [4.5]*			$(76.2 \times 127 \times 30.5)$	LPS43-M
3 T	15 V @ $2.6 \mathrm{~A}[3.6 \mathrm{~A}]^{*}$				LPS44-M
	24 V @ 1.6 A $\left.\mathrm{l}^{\text {. }} 3 \mathrm{~A}\right]^{*}$				LPS45-M
(1) 3	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}] \quad 12 \mathrm{~V}$ @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-12 V @ 0.5 A [0.7 A]			LPT42-M
	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}] \quad 15 \mathrm{~V}$ @ $2 \mathrm{~A}[2.5 \mathrm{~A}]$	-15 V @ 0.5 A [0.7 A]			LPT45-M

[50 W] 50 W	LP50-M Series - Medical				
	3.3 V @ 8 A	5 V @ 3 A	12 V @ 0.5 A	$2 " \times 4$ " 1.3 "	LPT51-M
4	5 V @ 8 A	12V@3A	-12V@0.5 A	$(50.8 \times 101.6 \times 33)$	LPT52-M
(1)	5 V @ 8 A	15 V @ 2.4 A	-15V@0.5 A		LPT53-M
	5 V @ 8 A	24 V @ 1.5 A	$12 \mathrm{~V} @ 0.5 \mathrm{~A}$		LPT54-M
[60 W] 60 W	5 V @ $11 \mathrm{~A}^{*}$				LPS52-M
	12 V @ $5 \mathrm{~A}^{*}$				LPS53-M
400.	15V@4 ${ }^{*}$				LPS54-M
- 5	24V@2.5 ${ }^{*}$				LPS55-M
	48 V @ $1.25 \mathrm{~A}^{*}$				LPS58-M

Options:
[] Rating with 30 CFM of air
(1) Optional cover/enclosure
(5) These models feature harmonic current correction to EN61000-3-2

* Floating output

Medical AC-DC Power Supplies

NLP65 Series - Medical

$12 \mathrm{~V} @ 6.5 \mathrm{~A}^{*}$	$3 \times 5 \times 1.26$
$15 \mathrm{~V} @ 5.3 \mathrm{~A}^{*}$	$(127 \times 76.2 \times 32)$

$24 \mathrm{~V} @ 3.5 \mathrm{~A}^{*}$		NLP65-9924J(5)
5 V @ 8 A	$12 \mathrm{~V} @ 3 \mathrm{~A}$	
5 V @ 8 A	$24 \mathrm{~V} @ 2 \mathrm{~A}$	
$5 \mathrm{~V} @ 8 \mathrm{~A}$	$12 \mathrm{~V} @ 3 \mathrm{~A}$	$-12 \mathrm{~V} @ 1 \mathrm{~A}$

[80 W] 60 W LP60-M Series - Medical

$12 \mathrm{~V} @ 5 \mathrm{~A}[6.7 \mathrm{~A}]^{*}$	$3^{\prime \prime} \times 5^{\prime \prime} \times 1.65 "$	LPS63-M	
$15 \mathrm{~V} @ 4 \mathrm{~A}[5.3 \mathrm{~A}]^{*}$	$(76.2 \times 127 \times 41.9)$	LPS64-M	
$24 \mathrm{~V} @ 2.5 \mathrm{~A}[3.3 \mathrm{~A}]^{*}$		LPS65-M	
$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]$	$12 \mathrm{~V} @ 3 \mathrm{~A}[3.5 \mathrm{~A}]$	$-12 \mathrm{v} @ 0.7 \mathrm{~A}[1 \mathrm{~A}]$	LPT62-M
$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]$	$15 \mathrm{~V} @ 2.8 \mathrm{~A}[3.3 \mathrm{~A}]$	$-15 \mathrm{~V} @ 0.7 \mathrm{~A}[1 \mathrm{~A}]$	LPT63-M

[110 W] 80 W	NLP110 Series - Medical					
	5 V @ $22 \mathrm{~A}^{*}$				$3 " \times 6.5 " \times 1.26 "$	NLP110-9905J ${ }^{(5)}$
	12 V @ $9.2 \mathrm{~A}^{*}$				$(76.2 \times 165.1 \times 45.72)$	NLP110-9912 ${ }^{(5)}$
N10	24V@ $4.6 \mathrm{~A}^{*}$					NLP110-9924J ${ }^{(5)}$
	48 V @ $2.3 \mathrm{~A}^{*}$					NLP110-9917J ${ }^{(5)}$
	3.3 V @ 20 A	2.5 V @ 20 A	12V@1A			NLP110-9994J ${ }^{(5)}$
	5 V @ 18A	3.3 V @ 20 A	12V@1A			NLP110-9993J ${ }^{(5)}$
	12 V @ 8.5 A	3.3 V @ 20 A	-12 V @ 1 A			NLP110-9995J ${ }^{(5)}$
	12 V @ 8.5 A	5V@18A	-12 V @ 1 A			NLP110-9908J ${ }^{(5)}$
[110 W] 80 W	NFS110 S	- Medica				
	12 V @ $9 \mathrm{~A}^{*}$				4.25 " x 7 " $\times 1.8{ }^{\prime \prime}$	NFS110-7912J
	15 V @ $7.3 \mathrm{~A}^{*}$				$(107.95 \times 177.8 \times 32)$	NFS110-7915J
	24 V @ $4.5 \mathrm{~A}^{*}$					NFS110-7924J
(1)	5.1 V @ 10 A	24V@ 5 A	-12 V @ 1 A	-5 V @ 1 A		NFS110-7901PJ
	5.1 V @ 10 A	24V@ 4.5 A	12 V @ 5 A	-12 V @ 1 A		NFS110-7902PJ

[150 W] 100 W TLP150 Series - Medical

(1)

(1)

Options:
F Replace the 'J' at the end of the model number with 'FJ' when the optional standby output and / or remote ON / OFF control is required e.g. TLP150N-99S12FJ
[] Rating with 30 CFM of air
(1) Optional cover/enclosure (see data sheet for increased dimensions)
(5) These models feature harmonic current correction to EN61000-3-2

* Floating output

14 For complete product specifications, technical reference notes and available product options, go to www.powerconversion.com.

Output Power	Output			Size $\mathrm{W} \times \mathrm{LxH}(\mathrm{mm}$)	Model
	V1	V2	V3		
50 W	AD50 Series - Medical				
	12 V @ 4.16 A			2.56 " $\times 4.72^{\prime \prime} \times 1.61$ "	AD5012N2LM
	12 V @ 4.16 A			($65 \times 120 \times 41$)	AD5012N3LM
50 W	DPT50-M Series - Medical				
	3.3 V @ 9 A	5V@3A	-12 V @ 0.5 A	2.39 " $\times 5.24$ " $\times 1.62$ "	DPT51-M
	5 V @ 8 A	12 V @ 3 A	-12V@0.5 A	$(60.7 \times 133 \times 41.15)$	DPT52-M
	5V@8A	15 V @ 2.4 A	-15 V @ 0.5 A		DPT53-M
	5 V @ 8A	24 V @ 1.5 A	12 V @ 0.5 A		DPT54-M

MP Series Up to 1200 Watts

Total Power: Input Voltage:
Up to 1200 W
85-264 Vac
$120-350 \mathrm{Vdc}$

Number Outputs: Up to 21

New Options Now Available

- Optional battery charger module
- Optional 2 A 5 V bias voltage
- Optional extended hold-up module
- Optional high voltage module (non-isolated)
- Optional OR'ing diode module

Special Features

- Current share on all outputs with ratings of 10 A or greater
- Remote sense on all outputs with ratings greater than 2 A
- Overload protection on all outputs
- Voltage adjustment on all outputs
- Margining on all single output modules
- Input OK signal and status indicator LED
- Global DC OK signal and status indicator LED
- Global and individual module inhibits/enable
- 2 year warranty
- Forced air cooling or customer provided air option
- Isolated 1 A 5 V bias voltage
- Power factor correction
- EN61000-3-2 harmonic distortion compliance
- CISPR 22, EN55022 Curve B conducted / radiated EMI
- European CE Mark requirements
- Optional VME timing and system DC OK module
- Low leakage option
- EN61000 immunity standards
- Standard modification flexibility (see datasheet on www.powerconversion.com)

Electrical Specifications

Input	
Input voltage	$\begin{aligned} & 85-264 \mathrm{Vac} \\ & 120-350 \mathrm{Vdc} \end{aligned}$
Frequency	$47-440 \mathrm{~Hz}$
Inrush current	40 A peak maximum (soft start)
Efficiency	70-80\% typ. @ full case load
Power factor	0.99 typ. meets EN61000-3-2 (N/A @ 440 Hz)
Turn-on time	AC on 1.5 second typical Inhibit/enable 150 ms typical
EMI filter standard	CISPR 22 EN55022 Level "B"
EMI filter (low leakage option)	$\begin{aligned} & \text { CISPR } 22 \\ & \text { EN55022 Level "A" } \end{aligned}$
Leakage current standard	2.0 mA maximum @ 240 Vac
Leakage current (low leakage option)	$300 \mu \mathrm{~A}$ maximum @ 240 Vac
Radiated EMI	$\begin{aligned} & \text { CISPR } 22 \\ & \text { EN55022 Level "B" } \end{aligned}$
Holdover storage	20ms minimum (independent of input Vac)
AC OK	$>5 \mathrm{~ms}$ early warning minimum before outputs lose regulation Full cycle ride thru (50 Hz)
Harmonic distortion	Meets EN61000-3-2
Isolation	Meets EN60950
Global inhibit/enable	TTL, Logic " 1 " and Logic "0"; configurable
Input fuse (internal)	MP4: 10 A ; MP6: 15 A; MP8: 20 A ; MP1: 20 A
Warranty	2 years

Output	
Adjustment range	$\pm 10 \%$ minimum all outputs
Margining	$\pm 4-6 \%$ nominal
Overall reg	0.4% or 20 mV maximum (36 W modules 4\% maximum)
Ripple	RMS: 0.1% or 10 mV , whichever is greater; $\mathrm{Pk}-\mathrm{Pk}: 1.0 \%$ or 50 mV , whichever is greater; bandwidth limited to 20 M Hz
Dynamic response	$<2 \%$ or 100 mV , with 25% load step
Recovery time	To within 1% in $<300 \mu$ second
Overcurrent protection	Single, main of dual output module $105-120 \%$ of rated output current
Short-circuit protection	Protected for continuous short-circuit Recovery is automatic upon removal of short
Overvoltage protection (measured at sense connection)	Single output modules
Reverse voltage protection	100\% of rated output current
Thermal protection	All outputs disabled when internal temp exceeds safe operating range $>5 \mathrm{~ms}$ warning (AC OK signal) before shutdown
Remote sense	Up to 0.5 V total drop (not available on triple output module)
Single wire parallel	Current share to within 2% of total rated current ${ }^{2}$
DC OK	-2% to -8% of nominal for any monitored output ${ }^{2}$
Minimum load	Not required on single or triple output modules. 10% required on main of dual output modules ${ }^{3}$
Housekeeping standby	$5 \mathrm{Vdc} @ 1.0 \mathrm{~A} \mathrm{~mA}$ maximum present whenever AC input is applied (optional 2.0 A available)
Module inhibit	TTL, isolated, singles and dual (both outputs) only
Switching frequency	250 k Hz
Output/output isolation	>1 Megohm
VME signal option board	POR signal \& quad external DC OK

Environmental

 Specifications| Operating temperature | $-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (start @ $0^{\circ} \mathrm{C}$) (derate each output linearly to 50% at $\left.70^{\circ} \mathrm{C}\right)\left(-20^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$ max. with rear air option) |
| :---: | :---: |
| Storage/ vibration | MIL-HDBK 810E |
| Humidity | 95\% non-condensing |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$ |
| Temperature coefficient | 0.02\% per ${ }^{\circ} \mathrm{C}$ |
| Cooling: | Internal DC fan or customer provided air (option) |

Safety

UL	UL1950
CSA	CSA22.2 No. 234 Level 5
IEC	IEC950, Class 1
VDE	EN60950-1
BABT	Compliance to EN 60950, BS 7002
CB	Certificate and report
CE	Mark

Notes:

1. Single output modules only
2. Single and main of dual output modules only
3. Contact factory for optional preload if required

Ordering Information

Sample below is 1200 W case with 12 V @ $50 \mathrm{~A} ; 5 \mathrm{~V}$ @ $60 \mathrm{~A} ; 24 \mathrm{~V}$ @ $8.5 \mathrm{~A} ; 12 \mathrm{~V}$ @ $10 \mathrm{~A} ; 12 \mathrm{~V}$ @ 4 A ; extended hold-up with no options.

MP Case Specifications

MP4 and MP6 (AC input on opposite side)

5	5	S	5	s
L	L	L	L	L
0	0	0	0	0
T	T	T	T	T
5	4	3	2	1

MP4 $=2.5^{\prime \prime} \times 5^{\prime \prime} \times 10$ " 5 available slots $(63.5 \times 127 \times 254 \mathrm{~mm})$
MP6 $=2.5$ " $\times 5$ " $\times 11$ " 5 available slots $(63.5 \times 127 \times 279.4 \mathrm{~mm})$

MP8 and MP1

MP Module Specifications

	Single					
	Single	Single	Dual	Triple		
Module code	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
Max output power	210 W	360 W	600 W	144 W	36 W	
Max output current	35 A	60 A	120 A	10 A	2 A	
Output voltages available	$2-60 \mathrm{~V}$	$2-60 \mathrm{~V}$	$2-60 \mathrm{~V}$	$2-28 \mathrm{~V}$	$2-28 \mathrm{~V}$	
Standard voltage increments	25	25	25	19	18	
Remote sense on outputs	Yes	Yes	Yes	Yes, both	No	
Remote margin/V-Program	Yes	Yes	Yes	No	No	
Module inhibit (isolated)	Yes	Yes	Yes	No	No	
Single wire active current share	Yes	Yes	Yes	Yes, main only	No	
Overvoltage/overcurrent protection	Yes	Yes	Yes	Yes	OCP only	
Minimum load required	No	No	No	10% main only	No	
Slots occupied in any MP case	1	2	3	1	1	

Slots occupied in any MP case

Voltage	Voltage Code	Single Output Module Code			Dual Output**		Triple Output		
		1	2	3	V1	V2	V1	V2	V3
2 V	A	35 A	60 A	120 A	-	10 A	-	-	2 A
2.2 V	B	35 A	60 A	120 A	-	10 A	-	-	2 A
3 V	C	35 A	60 A	120 A	-	10 A	-	-	2 A
3.3 V	D	35 A	60 A	120 A	-	10 A	-	-	2 A
5 V	E	35 A	60 A	120 A	10 A	10 A	-	-	2 A
5.2 V	F	35 A	60 A	115 A	-	10 A	-	-	2 A
5.5 V	G	34 A	58 A	109 A	-	10 A	-	-	2 A
6.0 V	H	23 A	42 A	78 A	-	10 A	-	-	2 A
8.0 V	I	20 A	36 A	68 A	-	-	1 A	1 A	1 A
10 V	J	18 A	32 A	60 A	-	-	1 A	1 A	1 A
11 V	K	17 A	31 A	54.5 A	-	-	1 A	1 A	1 A
12 V	L	17 A	30 A	50 A	10 A	4 A	1 A	1 A	1 A
14 V	M	14 A	21 A	40.5 A	9 A	4 A	1 A	1 A	1 A
15 V	N	14 A	20 A	39 A	8 A	4 A	1 A	1 A	1 A
18 V	0	11 A	19 A	33.3 A	A	-	A	0.5 A	0.5 A
20 V	P	10.5 A	18 A	30 A	-	-	-	0.5 A	0.5 A
24 V	Q	8.5 A	15 A	23.5 A	4 A	2 A	-	0.5 A	0.5 A
28 V	R	6.7 A	12.8 A	21.4 A	3 A	2 A	-	0.5 A	0.5 A
30 V	S	6.5 A	12 A	20 A	-	-	-		
33 V	T	6.2 A	10.9 A	18.2 A	-	-	-	-	-
36 V	U	5.8 A	10 A	16.6 A	-	-	-	-	-
42 V	V	4.2 A	7.5 A	12.5 A	-	-	-	-	-
48 V	W	4.0 A	7.5 A	12.5 A	-	-	-	-	-
54 V	X	3.7 A	6.0 A	11 A	-	-	-	-	-
60 V	Y	3.5 A	6.0 A	10 A	-	-	-	-	-
Non-std*	Z	Special Voltage - Consult factory for specifications							

* Note: Increments of current not shown can be achieved by paralleling modules (add currents of each module selected)
**Total loading of outputs on the dual module not to exceed 144 W .

Intelligent MP Series iMP ${ }^{m}$

Up to 1500 Watts

Total Power: Up to 1500 Watts
Input Voltage: 85-264 Vac
120-300 Vdc
\# of Outputs: Up to 21

Special Features

- Full Medical EN60601 approval
- Intelligent $I^{2} \mathrm{C}$ control
- Voltage adjustment on all outputs (Manual or $\mathrm{l}^{2} \mathrm{C}$)
- Configurable input and output (case and module) OK signals and indicators
- Configurable inhibit/enable
- Configurable output UP/DOWN sequencing
- Configurable current limit (foldback or constant current)
- High power density (8.8 W/cu-in)
- Intelligent fan (speed control/fault status)
- Downloadable GUI from website
- Customer provided air option

The $i \mathrm{MP}$ software is designed to make the $i \mathrm{MP}$ Power Supply Unit (PSU) accessible to the user. It is intended to provide information gathered from the PSU and interactive controls to the basic capabilities of i MP power supply. To download go to: umw.powerconversion.com/imp

- uP controlled PFC input with active inrush protection

- ${ }^{12} \mathrm{C}$ monitor of voltage, current, and temp
- Programmable voltage, current limit, inhibit/enable through ${ }^{2}$ 'C

PMBBS

- Optional extended hold-up module (SEMI F47 compliance)
- Increased power density to 50% over standard MP
- Backward compatibility with standard MP
- External switching frequency sync input
- Optional conformal coating
- Industrial temp range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
- No preload required
- Industrial shock/vibration (>50G's)

Electrical Specifications

Input	
Input range	85-264 Vac 120-350 Vdc (limited to 300 Vdc in medical applications)
Frequency	$47-440 \mathrm{~Hz}$
Inrush current	40 A peak max. (soft start)
Efficiency	Up to 85\% @ full case load
Power Factor	0.99 typ. meets EN61000-3-2 (n/a @ 440 Hz)
Turn-on time	AC on 1.5 sec typ., inhibit/enable 150ms typical Programmable delay
EMI filter	CISPR 22/EN55022 Level "B"
Leakage current	300^A max. @ 240 Vac ; 47-63 Hz
Radiated EMI	CISPR 22/EN55022 Level "B"
Holdover storage	20 ms minimum (independent of input Vac) additional 34 mSEC holdover storage with optional HUP module (SEMI F47 compatible)
AC OK	$>5 \mathrm{~ms}$ early warning min. before outputs lose regulation Full cycle ride thru (50 Hz) (N/A on iMP4> 750 W @ 90 Vac)
Harmonic distortion	Meets EN61000-3-2
Isolation	Meets EN60950 and EN60601
Global Inhibit/Enable	TTL, Logic " 1 " and Logic "0"; configurable
Input fuse (internal)	iMP4: 16 A; iMP8: 20 A; iMP1: 25 A (both lines fused)
Warranty	2 years

Output Module Voltage/Current

Voltage	Voltage Code	Single Output Module Code			Dual Output**		${ }^{12} \mathrm{C}$ Adjustment Ranges
		1	2	3	V1	V2	
2 V	A	35 A	60 A	150 A	10 A	10 A	1.8-6.1
2.2 V	B	35 A	60 A	150 A	10 A	10 A	
3 V	C	35 A	60 A	150 A	10 A	10 A	
3.3 V	D	35 A	60 A	150 A	10 A	10 A	
5 V	E	35 A	60 A	150 A	10 A	10 A	
5.2 V	F	35 A	60 A	150 A	10 A	10 A	
5.5 V	G	34 A	58 A	137 A	10 A	10 A	
6.0 V	H	23 A	42 A	80 A	10 A	10 A	5.4-13.2
8.0 V	1	20 A	36 A	80 A	10 A	4 A	
10 V	J	18 A	32 A	75 A	10 A	4 A	
11 V	K	17 A	31 A	68 A	10 A	4 A	
12 V	L	17 A	30 A	62.5 A	10 A	4 A	
14 V	M	14 A	21 A	53.5 A	9 A	4 A	12.6-22.0
15 V	N	14 A	20 A	50 A	8 A	4 A	
18 V	0	11 A	19 A	41.6 A	-	-	
20 V	P	10.5 A	18 A	37.5 A	-	-	
24 V	Q	8.5 A	15 A	31.3 A	4 A	2 A	21.6-39.6
28 V	R	6.7 A	12.8 A	26.8 A	3 A	2 A	
30 V	S	6.5 A	12 A	25 A	-	-	
33 V	T	6.2 A	11 A	22.7 A	-	-	
36 V	U	5.8 A	10 A	20.8 A	-	-	
42 V	V	4.2 A	7.5 A	17.9 A	-	-	37.8-60.0
48 V	W	4.0 A	7.5 A	15.6 A	-	-	
54 V	X	3.7 A	6.0 A	13.9 A	-	-	
60 V	Y	3.5 A	6.0 A	12.5 A	-	-	

Non-std* Z Special Voltage - Consult Factory for specifications

* Note: Increments of current not shown can be achieved by paralleling modules (add currents of each module selected).
**Total loading of outputs on dual module not to exceed 144 W .

Ordering Information

Sample below is 1500 W case with 12 V @ $62.5 \mathrm{~A} ; 5 \mathrm{~V}$ @ $60 \mathrm{~A} ; 24 \mathrm{~V} @ 8.5 \mathrm{~A} ; 12 \mathrm{~V}$ @ $10 \mathrm{~A} ; 12 \mathrm{~V}$ @ 4 A; with no options.

Ordering Note:

1. The cases and modules of both MP and iMP series can be interchanged to allow more flexibility. If intelligent modules are used with non-intelligent cases, a numeric code " 4 " is placed at the end of the module code (ex. 4LLO becomes 4LL4).
2. USB to I2C module order code 73-769-001
iMP Case Specifications
i MP4 (AC input on opposite side)

($63.5 \times 127 \times 254$)
750 W max. 1100 W max.

MP8 and iMP1

AC input	$i \mathrm{MP8}$ and i MP1							
	(4)	S L O T 6	S	S L O T 4	S L 0 T 3	S L 0 T 2	S	
$i \mathrm{MP} 1$ only Input								
85-264 Vac 180-264 Vac								
$\begin{aligned} i \text { MP8 }= & 2.5^{\prime \prime} \times 7 " \times 10 " 6 \text { available slots } \\ & (63.5 \times 177.8 \times 254 \mathrm{~mm}) \end{aligned}$					1000 W max.			200 W max.
i MP1 $=2.5^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime} 7$ available slots					1200 W max.			500 W max.

144 W
Dual

AC Input

Figure 2. Connector J1

Mates with
Molex 90142-0010

Mates with
Landwin 2050 S 1000 Housing 2053T011P Pin
Connector Kit order \# 73-841-023

PFC Input Connector (control and signals)
Pin No. Function

Input AC OK - "emitter" Input AC OK - "collector"
Global DC OK - "emitter"
Global DC OK - "collector"
External Sync

Global inhibit/optional enable return
+5 VSB housekeeping
+5 VSB housekeeping return
Figure 3. Connector J2 $\quad I^{2} \mathrm{C}$ Bus Output Connector
Pin No. Function
1 No connection
2 No connection
3 No connection
4 Serial clock signal (SCL)
5 Serial data signal (SDA)
$6 \quad$ Address bit 0 (AO)

Pin Connectors

Global inhibit/optional enable logic "0"
Global inhibit/optional enable logic "1"

7 Address bit 1 (A1)
8 Address bit 2 (A2)
9 Secondary return (GND)
105 Vcc external bus (5 VCC. Bus)

Intelligent VS Series iVS'

 Up to 4920 WattsTotal Power: Up to 4920 Watts Input Voltage: $85-264 \mathrm{Vdc}$ $120-300 \mathrm{Vdc}$ \# of Outputs: Up to 24

iVS1-3E0-210-2Q0-1WD-00-A

Special Features

- Full medical EN60601 approval
- Intelligent $I^{2} C$ control
- Voltage adjustment on all outputs (manual or ${ }^{2} \mathrm{C}$)
- Configurable input and output OK signals and indicators
- Configurable inhibit/enable
- Configurable output UP/DOWN sequencing
- High power density ($12 \mathrm{~W} / \mathrm{cu}-\mathrm{in}$)
- Intelligent fan (speed control/fault status)
- uP controlled PFC input with active Inrush protection
- $I^{2} C$ monitor of voltage, current, and temp
- Programmable voltage, current limit, inhibit/enable through $I^{2} C$
- Optional extended hold-up module (SEMI F47 compliance)
- Increased power density to 150\%
- Optional conformal coating
- Industrial temp range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
- Uses standard $i \mathrm{MP}$ modules
- Field upgradeable firmware
- RoHS compliant

Electrical Specifications

210 W

360 W

750 W

1500 W

Single

144 W

Input

Input range

$$
i \text { VS1 \& iVS3 90-264 Vac 1ø: 120-300 Vdc }
$$

$$
i \text { VS6 \& } i \text { VS8 } \quad 170-264 \operatorname{Vac} 3 \emptyset
$$

i VS8H 480 Vac nominal $3 \emptyset$
380 Vac nominal $3 \varnothing$ derate to 3800 W max. $47-440 \mathrm{~Hz}$

40 A peak maximum (soft start)
Up to 85\% @ full case load
0.99 typ. meets EN61000-3-2

AC on 1.5 sec typical, inhibit/enable 150 ms typical Programmable
CISPR 22/EN55022 Level "B"
$300 \mu \mathrm{~A}$ max. @ 240 Vac ; 47-63 Hz
CISPR 22/EN55022 Level "B"
10 ms minimum (independent of input Vac) additional 20 mSEC holdover storage with optional HUP module (SEMI F47 compatible)

AC OK	$>5 \mathrm{~ms}$ early warning minutes before outputs lose regulation Full cycle ride thru $(50 \mathrm{~Hz})$. Programmable
Harmonic distortion	Meets EN61000-3-2
Isolation	Meets EN60950 and EN60601
Global inhibit / enable	TTL, Logic "1" and Logic "0"/configurable
Warranty	3 years

Dual

Output	
Adjustment range*	$\pm 10 \%$ minimum all outputs (manual) (full module adjustment range using $I^{2} \mathrm{C}$)
Margining	$\pm 4-6 \%$ nominal analog (single output module only)
Overall regulation	0.4% or 20 mV max.
Ripple	RMS: 0.1% or 10 mV , whichever is greater Pk-Pk: 1.0% or 50 mV , whichever is greater Bandwidth limited to 20 M Hz
Dynamic response	$<2 \%$ or 100 mV , with 25% load step
Recovery time	To within 1% in <300 μ second
Overcurrent protection**	Configurable through $I^{2} C$. single output module and main output of the dual output module 105-120\% of rated output current. Aux output of dual output module 105-140\% of rated output current Special programmable OCP delay on 1500 W module from 100 mSec to 25.5 seconds with shutdown features
Short-circuit protection	Protected for continuous short-circuit Recovery is automatic upon removal of short (Shutdown mode on 1500 W module)
Overvoltage protection*	Configurable through ${ }^{2} \mathrm{C}$
Single output module	2-5.5 V 122-134\% ; 6-60 V 110-120\%
Dual output module	2-6 V 122-134\%; 8-28 V 110-120\%
Triple output module	No overvoltage protection provided
Reverse voltage protection	100\% of rated output current
Thermal protection*	Configurable through $I^{2} C$ All outputs disabled when internal temp exceeds safe operating range. $>5 \mathrm{~ms}$ warning (AC OK signal) before shutdown
Remote sense	Up to 0.5 V total drop (not available on triple output module)
Single wire parallel	Configurable through firmware Current share to within 2% of total rated current
DC OK*	$+/-5 \%$ of nominal. Configurable through ${ }^{2} \mathrm{C}$
Minimum load	Not required
Housekeeping bias voltage	5 Vdc @1.0 A max. present whenever AC input is applied
Module inhibit*	Configured and controlled through $I^{2} \mathrm{C}$
Switching frequency	250 kHz accepts external sync signal
Output/Output isolation	>1 Megohm, 500 V
* Can be controlled via ${ }^{2} \mathrm{C}$	
** Controlled via ${ }^{2} \mathrm{C}$ but r	equires load calibration

Environmental Specifications

\(\left.$$
\begin{array}{ll}\text { Operating } & -40^{\circ} \text { to } 70^{\circ} \mathrm{C} \text { ambient. } \\
\text { temperature } & \begin{array}{l}\text { Derate each output } 2.5 \% \text { per } \\
\text { degree from } 50^{\circ} \text { to } 70^{\circ} \mathrm{C} . \\
\left(-20^{\circ} \mathrm{C} \text { start up) }\right.\end{array}
$$

Storage \& -40^{\circ} \mathrm{C} to 85^{\circ} \mathrm{C}\end{array}\right]\)| temperature |
| :--- |

Safety

UL	UL60950/UL2601 (cCSAus)
CSA	CSA22.2 No. 234 Level 5
VDE	EN60950/EN60601-1
BABT	Compliance to
	EN 60950/EN60601 BS 7002
CB	Certificate and report
CE	Mark to LVD

Output Module Line-up

Module Code	1	2	3	5	4	
Module Type	Single	Single	Single	Single	Dual	
Max output power	210 W	360 W	750 W	1500 W	144 W	
Max output current	35 A	60 A	150 A	140 A	10 A	
Output voltages available*	2-60 V	2-60 V	2-60 V	6-60 V	$\begin{gathered} 6-15,24-28 ; 6-15 ; 6-15 ; 6-15 ; \\ 2-6 ; 2-6,2-6 ; 24-28,24-28 ; \\ 24-28 ; 2-6 \end{gathered}$	
Standard voltage increments	25	25	25	18	19	
Remote sense	Yes	Yes	Yes	Yes	Yes	Yes
Remote margin*	Yes	Yes	Yes	Yes	No	No
V-Program - ${ }^{2} \mathrm{C}$ Control*	Yes	Yes	Yes	Yes	Yes	Yes
Active Current Share	Yes	Yes	Yes	Yes	Yes	No
Module Inhibit - $1^{2} \mathrm{C}$ Control*	Yes	Yes	Yes	Yes	Yes	Yes
Module Inhibit - Analog	Yes	Yes	Yes	Yes	No	No
Overvoltage/Overcurrent protection*	Yes	Yes	Yes	Yes	Yes	Yes
Minimum load required	No	No	No	No	No	No
Slots occupied in any iMP case	1	2	3	4		

* Programmable

24 For complete product specifications, technical reference notes and available product options, go to www.powerconversion.com.

Output Module Voltage/Current*

Voltage	Voltage Code	Single Output Module Code				Dual Output**		${ }^{12} \mathrm{C}$ Adjustment Ranges
		1	2	3	5	V1	V2	
2 V	A	35 A	60 A	150 A	-	10 A	10 A	1.8-2.2
2.2 V	B	35 A	60 A	150 A	-	10 A	10 A	2.0-2.4
3 V	C	35 A	60 A	150 A	-	10 A	10 A	2.7-3.3
3.3 V	D	35 A	60 A	150 A	-	10 A	10 A	3.0-3.6
5 V	E	35 A	60 A	150 A	-	10 A	10 A	4.5-5.5
5.2 V	F	35 A	60 A	150 A	-	10 A	10 A	4.7-5.7
5.5 V	G	34A	58 A	137 A	-	10 A	10 A	5.0-6.1
6.0 V	H	23 A	42 A	80 A	140 A	10 A	10 A	5.4-6.6
8.0 V	1	20 A	36 A	80 A	140 A	10 A	4 A	7.2-8.8
10 V	J	18 A	32 A	75 A	140 A	10 A	4 A	9.0-11.0
11 V	K	17 A	31 A	68 A	136 A	10 A	4 A	9.9-12.1
12 V	L	17 A	30 A	62.5 A	125 A	10 A	4 A	10.8-13.2
14 V	M	14A	21 A	53.5 A	107 A	9 A	4 A	12.6-15.4
15 V	N	14A	20 A	50 A	100 A	8 A	4 A	13.5-16.5
18 V	0	11 A	19 A	41.6 A	83.3 A	-	-	16.2-19.8
20 V	P	10.5A	18 A	37.5 A	75 A	-	-	18.0-22.0
24 V	Q	8.5 A	15 A	31.3 A	62.5 A	4 A	2 A	21.6-26.4
28 V	R	6.7 A	12.8 A	26.8 A	53.5 A	3 A	2 A	25.2-30.8
30 V	S	6.5 A	12 A	25 A	50 A	-	-	27.0-33.0
33 V	T	6.2 A	11 A	22.7 A	35.8	-	-	29.7-36.3
36 V	U	5.8 A	10 A	20.8 A	35.8	-	-	32.4-39.6
42 V	V	4.2 A	7.5 A	17.9 A	35.7	-	-	37.8-46.2
48 V	W	4.0 A	7.5 A	15.6 A	31.2	-	-	43.2-52.8
54 V	X	3.7 A	6.0 A	13.9 A	27.7	-	-	48.6-59.4
60 V	Y	3.5 A	6.0 A	12.5 A	25	-	-	54.0-66.0
Contact Factory								
Special	Z	35 A	60 A	150 A	-	-	10 A	2.3-2.6
Special	Z	35 A	60 A	150 A	-	-	10 A	3.7-4.4
Special	Z	20 A	36 A	80 A	140 A	-	8 A	6.7-7.1
*Note: Increments of current not shown can be achieved by paralleling modules (add currents of each module selected)								

Ordering Information

Sample below is 3210 W case with 12 V @ $125 \mathrm{~A} ; 24 \mathrm{~V}$ @ $8.5 \mathrm{~A} ; 5 \mathrm{~V} @ 60 \mathrm{~A} ; 12 \mathrm{~V} @ 10 \mathrm{~A}$ and 12 V @ 4 A; with no options.

i VS1 and i VS6

(0.000	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~L} \\ & 0 \\ & \mathrm{~T} \\ & 9 \end{aligned}$	LLOT8	S 	S L O T 6	$\begin{aligned} & i \text { VS } 1=5 " \times 5 " \times 11^{\prime \prime} \\ & (127 \times 127 \times 254) \\ & 9 \text { available slots } \end{aligned}$	Input	
						100-264 Vac	180-264 Vac
						1500 W max.	3210 W max.
5	5	5	5	5			
1	L	1	L	L	i VS6 = $5^{\prime \prime} \times 5^{\prime \prime} \times 11^{\prime \prime}$	N/A	3210 W max.
0	\bigcirc	0	0	O	($127 \times 127 \times 254$)		
T	T	T	T	T	9 available slots		
5	4	3	2	1	9 available slots		

iVS3 and iVS8

i VS3 \& 8 = $5^{5^{\prime \prime} \times 8 " \times 11^{\prime \prime}}$ ($127 \times 177 \times 254$)
14 available slots
i VS8H $=55^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime}$ $(127 \times 177 \times 254)$
14 available slots

Pin Connectors

Figure 1. AC Input

Bulk Power (HPS) 350-3000 Watts

Special Features

- EN61000-3-2 harmonic compliance
- Built-in EMI filter
- Low output ripple
- +5 V standby output
- Built-in cooling fans
- Overcurrent protection
- Overvoltage protection
- Over temperature protection
- Hot swap/N + 1 redundant
- Built-in OR'ing diodes
- Active power factor correction
Voltage Availability

Model	HPS35	HPS15	HPS3KW
Wattage	350 W	$1500 \mathrm{~W}^{3}$	3000 W
Input Voltage	90-264 Vac	$90-264 \mathrm{Vac}$	180-264 Vac
Available Standard Output Voltages (order code) ${ }^{1}$			
12 (L)	-		
24 (Q)	\bullet	\bullet	
28 (R)		\bullet	
30 (S)		\bullet	
48 (W)	\bullet	\bullet	\bullet
54 (X)	\bullet	\bullet	\bullet
60 (Y)		\bullet	
Available Options	See Note 1	See Note 1	See Note 2
Corresponding Rack	HPR1-00	HPR3-00	HPR3KW-00
Notes: $\quad 1=$ Consult factory for other output voltages and options $2=$ Comes with R^{2} C interface 3 = 1200 W@ 90-264 Vac; 1500 W@100-264 Vac			
 Refer to data sheet			

Environmental Specifications

HPS15 and HPS35
$\begin{array}{ll}\begin{array}{ll}\text { Operating } \\ \text { temperature }\end{array} & \begin{array}{ll}-10^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \text { ambient (derate output } \\ \text { HPS } 3 \text { KW } \\ \text { Operating } \\ \text { temperature }\end{array}\end{array} \quad 5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. per degree from $50^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
Safety

UL	UL60950 (UL recognized)
NEMKO	EN60950
TUV	EN60950
CE	Mark
CB	Report

New Features
 Coming Soon

- HPR1 split Rack (dual output voltage)
- 500 W HPS50

Electrical Specifications

Input HPS15	
Input voltage	1200 W @90-264 Vac
	1500 W @180-264 Vac
Frequency	$47-440 \mathrm{~Hz}$
Inrush current	40 A peak max.@ $25^{\circ} \mathrm{C}$
Efficiency	85\% typ. @ full load, 230 Vac
Power factor	0.99 typ. meets EN61000-3-2
Turn-on time	AC on 1.5 sec typical
	Inhibit/enable 100ms typical
EMI filter standard	CISPR 22; EN55022 Level "B"
Leakage current standard	2 mA max @ 264 Vac @ 60 Hz per module
Radiated EMI	CISPR 22; EN55022 Level "B"
Holdup time	20 ms minimum (independent of input Vac)
AC OK	$>5 \mathrm{~ms}$ early warning min. before outputs lose regulation Full cycle ride thru (50 Hz)
Harmonic distortion	Meets EN61000-3-2
Isolation	Meets EN60950
Output	
Margining	$\pm 5 \%$ of nominal
Overall req	$\pm 1 \%$
Ripple	1\% of Vout Pk-Pk limited to 20M Hz
Dynamic response	2% with 25% load step
Recovery time	To within 1% in <300 $\mu \mathrm{sec}$
Over current protection	105\%-120\% of rated output current
Short-circuit protection	Protected for continuous short-circuit Recovery is automatic upon removal of short
Overvoltage protection	105-120\%. Recycle AC input voltage to reset OVP circuit
Reverse voltage protection	100\% of rated output current
Thermal protection	Main and Aux disabled when internal temp exceeds safe operating range.
Remote sense	Up to 0.5 V total drop
Single wire parallel	Current share to within 10% of total rated current
DC OK	$\pm 5 \%$ of nominal
Minimum load*	Not required
Standby voltage	$5 \mathrm{Vdc} @ 5$ A max. present whenever AC input is applied (3.3 V @ 5 A optional)
Global inhibit	Logic "0" standard logic "1" optional
*3 A minimum for current share operation	

Electrical Specifications

Input HPS3KW	
Input voltage	180-264 Vac
Frequency	$47-63 \mathrm{~Hz}$
Inrush current	100 A peak
Efficiency	85\% typical at full load
Power factor	0.98 typical
EMI filter standard	CISPR 22 Class A
Leakage current	1.16 mA max @ 264 Vac
Output	
DC voltage	52 V @ 57 A ; 5 Vsb @ 5 A
Maximum power	3000 W
Adjustment range	Contact factory
Supervisory output	5 V @ 5 A
Hold up time	20 ms
Overcurrent	48 V: 110\% - 150\%; 5 Vsb: 101\% - 125\%
Overvoltage	125\% above nominal output
Logic	
Enable	Requires contact closure from 'PSON' to 5 V sb return
AC OK	TTL signal LOW
Power fail	TTL signal LOW; goes HIGH in the event of failure
Power good	TTL logic signal goes high 100-1000 msec after 48 Vdc output. It goes LOW at least 1 ms before loss of regulation

Ordering Information

Module	HPS35	HPS15	HPS3KW
Rack \#	HPR1-00*	HPR3-00*	HPR3K-00*
\# of Slots	4	4	6
Total Power	1400 W	6000 W	$18,000 \mathrm{~W}$

[^4]
Distributed Power Systems (DS) AC and DC inputs available 450-2900 Watts

Special Features

- Active power factor correction
- EN61000-3-2 harmonic compliance
- Active AC inrush control
- High density
- Outputs +12 Vdc with some +48 Vdc models available
- 3.3 Vdc standby
- Options for 5 V standby voltage (DS650/850 only)
- No minimum load required
- Hot plug operation
- N+1 redundant
- Internal OR'ing FETs
- Active current sharing
- Built-in cooling fans
- I2C Interface with EEPROM for FRU data
- Internal fan speed control with fan fail signal
- DC Input
- DSR1 rack for DS650/850. Standard 19" 1 U fits up to 5 modules (4250 Watts)
- DSR2 rack for DS1300/1500.

Standard 19" 2 U fits up to 3 modules (4500 Watts)

- UFR6000 rack for UFE2000 standard 19" 1 U fits up to 3 modules (6000 watts)

Safety

UL	UL60950 (UL recognized)
NEMKO	EN60950
TUV	EN60950
CE	Mark
CB	Report

Voltage Availability

Model	12 V	24 V	48 V
DS450	(-3)	(-5)	(-9)
DS450DC	\bullet		
DS550	\bullet		
DS550DC	\bullet		
DS650	\bullet		\bullet
DS650DC	\bullet		
DS850	\bullet	$*$	\bullet
DS850DC	\bullet		
DS1200	\bullet		
DS1300	\bullet		
DS1500	\bullet		
DS1800	\bullet		
DS2000	\bullet		
DS2900	\bullet		
UFE2000		\bullet	\bullet

[^5]- Options for low leakage
- Options for reverse airflow
- 2000 W 1ux 3u model
- 24 V output on DS850

DS1200

DS1300/DS1500

New Products and Features Coming Soon

DS650 / DS850

UFE2000

DS2900

Distributed Power

Electrical Specifications

Data	DS450-3	DS550-3	DS450DC-3	DS550DC-3	DS650-3	DS650-9
Input						
Input Range	90-264 Vac	90-264 Vac	40-72 Vdc	40-72 Vdc	90-264 Vac	90-264 Vac
Frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	DC	DC	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Efficiency	80\% Typ	82\% Typ				
EMI/RFI	Class B	Class B	N/A	N/A	Class B	Class B
Leakage Current	1.4mA @ 240 V	1.4 mA @ 240 V	$1.4 \mathrm{~mA} @ 240 \mathrm{~V}$			
Outputs						
Output Main	$12 \mathrm{v} / 37 \mathrm{~A}$	$12 \mathrm{v} / 45 \mathrm{~A}$	12v / 37 A	$12 \mathrm{v} / 45 \mathrm{~A}$	12v/52.5 A	48v / 13.1 A
Output Stand-By	$3.3 \mathrm{vsb} / 3 \mathrm{~A}$	$3.3 \mathrm{vsb} / 6 \mathrm{~A}$	$3.3 \mathrm{vsb} / 6 \mathrm{~A}$			
OCP/OVP/OTP	YES	YES	YES	YES	YES	YES
I2C Control	YES	YES	YES	YES	YES	YES
Envrionmental						
Operating Temp	$-10^{\circ} \mathrm{C}$ to 50응	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to 50${ }^{\circ} \mathrm{C}$			
Derating	50% at $70^{\circ} \mathrm{C}$					
Storage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
RoHS Compliant	YES	YES	YES	YES	YES	YES
MTBF	500K Hours					
Other:						
Size (inch)	$1.57 \times 3.07 \times 11.05$	$1.57 \times 3.20 \times 11.00$	$1.57 \times 3.20 \times 11.00$			
Size (mm)	$40 \times 78 \times 280$	$40 \times 81.3 \times 279.4$	$40 \times 81.3 \times 279.4$			
Power Density	8.42	10.30	8.42	10.30	11.76	11.76
Cubic Inches	53.42	53.42	53.42	53.42	55.44	55.44
Pro-E Files	NO	NO	YES	YES	YES	YES
Thermal Data	YES	YES	YES	YES	YES	YES
PQ Airflow Curves	YES	YES	YES	YES	YES	YES
Mating Connector FCI	51721-10002406 AA	51721-10002406AA	51721-10002406 AA	51721-10002406AA	51721-10002406 AA	51721-10002406AA
Unit Connector FCI	51741-10002406CC	51741-10002406CC	51741-10002406CC	51741-10002406CC	51741-10002406CC	51741-10002406CC
Fan	40 mm 1 per	40 mm 2 per	40 mm 2 per			
Warranty	1 Year					
Ordering Codes						
Standard	DS450-3	DS550-3	DS450DC-3	DS550DC-3	DS650-3	DS650-9
5 V Standby					DS650-3-002	DS650-9-002
Reverse Air	DS450-3-002		DS450DC-3-002			
Fan Off with inhibit						
Disable External Fan Drive	DS450-3-003					
Positronic Input Connector			DS450DC-3-001	DS550DC-3-001		

Data	DS650DC-3	DS850-3	DS850DC-3	DS850-9	DS1200-3
Input					
Input Range	40-72 Vdc	90-264 Vac	40-72 Vdc	90-264 Vac	90-264 Vac
Frequency	DC	$47-63 \mathrm{~Hz}$	DC	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Efficiency	80\% Typ	82\% Typ	80\% Typ	83\% Typ	90\% Typ
EMI/RFI	N/A	Class B	N/A	Class B	Class B
Leakage Current	1.4 mA @ 240 V				
Outputs					
Output Main	12v/52.5 A	$12 \mathrm{v} / 70.0 \mathrm{~A}$	$12 \mathrm{v} / 70.0 \mathrm{~A}$	$48 \mathrm{v} / 17.5 \mathrm{~A}$	12v / 98 A
Output Stand-By	$3.3 \mathrm{vsb} / 6 \mathrm{~A}$				
OCP/OVP/OTP	YES	YES	YES	YES	YES
I2C Control	YES	YES	YES	YES	YES
Envrionmental					
Operating Temp	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to 50응	$-10^{\circ} \mathrm{C}$ to 50${ }^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to 50${ }^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Derating	50% at $70^{\circ} \mathrm{C}$				
Storage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
RoHS Compliant	YES	YES	YES	YES	YES
MTBF	500K Hours				
Other:					
Size (inch)	$1.57 \times 3.20 \times 11.00$				
Size (mm)	$40 \times 81.3 \times 279.4$				
Power Density	11.76	15.38	15.38	15.38	21.71
Cubic Inches	55.44	55.44	55.44	55.44	55.44
Pro-E Files	YES	YES	YES	YES	YES
Thermal Data	YES	YES	YES	YES	YES
PQ Airflow Curves	YES	YES	YES	YES	YES
Mating Connector FCI	51721-10002406 AA				
Unit Connector FCI	51741-10002406CC	51741-10002406CC	51741-10002406CC	51741-10002406CC	51741-10002406CC
Fan	40 mm 2 per	36 mm 1 per			
Warranty	1 Year				
Ordering Codes					
Standard	DS650DC-3	DS850-3	DS850DC-3	DS850-9	DS1200-3
5 V Standby		DS850-3-002		DS850-9-002	
Reverse Air		DS850-3-006			
Fan Off with inhibit		DS850-3-004			
Disable External Fan Drive					
Positronic Input Connector	DS650DC-3-001		DS850DC-3-001		

Data	DS1300-3	DS1500-3	DS1800-3	DS2000-3	UFE2000	DS2900
Input:						
Input Range	90-264 Vac	180-264 Vac				
Frequency	$47-63 \mathrm{~Hz}$					
Efficiency	80\% Typ	80\% Typ	87\% Typ	87\% Typ	91\% Typ	90\% Typ
EMI/RFI	Class B (in rack)	Class B				
Leakage Current	1.4 mA @ 240 V	$1.4 \mathrm{~mA} @ 240 \mathrm{~V}$	1.4 mA @ 240 V	$1.4 \mathrm{~mA} @ 240 \mathrm{~V}$	2.0 mA max	$1.4 \mathrm{~mA} @ 240 \mathrm{~V}$
Outputs:						
Output Main	$12 \mathrm{~V} / 106 \mathrm{~A}$	$12 \mathrm{~V} / 123 \mathrm{~A}$	12 V / 147.5 A	$12 \mathrm{~V} / 165 \mathrm{~A}$	$48 \mathrm{~V} / 52 \mathrm{~A}$ (33 A wide input range)	$12 \mathrm{~V} / 240 \mathrm{~A}$
Output Stand-By	$3.3 \mathrm{Vsb} / 7 \mathrm{~A}$	$3.3 \mathrm{Vsb} / 7 \mathrm{~A}$	$3.3 \mathrm{Vsb} / 9 \mathrm{~A}$	$3.3 \mathrm{Vsb} / 6 \mathrm{~A}$	$11 \mathrm{~V} / 26 \mathrm{~A}$	$3.3 \mathrm{Vsb} / 3 \mathrm{~A}$
OCP/OVP/OTP	YES	YES	YES	YES	YES	YES
I2C Control	NO	NO	YES	YES	YES	YES
Envrionmental						
Operating Temp	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$-33^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Derating	50% at $70^{\circ} \mathrm{C}$	50% at $70^{\circ} \mathrm{C}$	N/A	N/A	1600 W @ $70{ }^{\circ} \mathrm{C}$	N/A
Storage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
RoHS Compliant	YES	YES	YES	YES	YES	YES
MTBF	500K Hours	500K Hours	500K Hours	500K Hours	279K Hours	500K Hours
Other:						
Size (inch)	$2.8 \times 4.9 \times 7.5$	$2.8 \times 4.9 \times 7.5$	$1.57 \times 4.2 \times 11.6$	$1.57 \times 4.2 \times 11.6$	$1.6 \times 5.56 \times 10.74$	$3.07 \times 4.17 \times 8.5$
Size (mm)	$71.1 \times 124.5 \times 190.5$	$71.1 \times 124.5 \times 190.5$	$40 \times 106.7 \times 295.7$	$40 \times 106.7 \times 295.7$	$40 \times 141.2 \times 272.8$	$78 \times 106 \times 217$
Power Density	12.63	12.63	23.5	26.2	22.0	26.7
Cubic Inches	102.9	102.9	76.5	76.5	95.5	108.8
Pro-E Files	YES	YES	YES	YES	YES	YES
Thermal Data	YES	YES	YES	YES	YES	YES
PQ Airflow Curves	YES	YES	YES	YES	YES	YES
Mating Connector FCI	51939-055	51939-055	Molex SD-45984-1462	Molex SD-45984-1462	FCI 51915-070	FCI SK10065864-003LF
Unit Connector FCI	Molex 87806-8000	Molex 87806-8000	Molex 45985-xxx	Molex 45985-xxx	FCI 51939-180	FCI SK10065866-003LF
Fan	$2 \times 60 \mathrm{~mm}$	$2 \times 40 \mathrm{~mm}$	TBA			
Warranty	1 Year					
Ordering Codes						
Standard	DS1300-3	DS1500-3	DS1800-3	DS2000-3	UFE200096548PJ	DS2900-3
5 V Standby						
Reverse Air						DS2900-3-001
Fan Off with inhibit						
Disable External Fan Drive						
Positronic Input Connector						

DIN Rail (ADN) 60-960 Watts

Special Features

- Power factor correction
- Auto select $115 / 230 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ input
- 380-480 Vac 3-phase
- All single phase models meet SEMI F47 Sag Immunity
- Class 1, Div 2 Hazardous Locations
- DC OK signal
- Adjustable voltage
- Industrial grade design (no derating to $60^{\circ} \mathrm{C}$)
- User-friendly front panel
- Single and three-phase inputs available
- Highly efficient >90\% switching technology
- High MTBF and reliability
- Available plastic case (PP) or metal (PM)
- 3 year warranty

Electrical Specifications

Input Single Phase

Nominal voltage	$115 / 230 \mathrm{Vac}$ auto select
Power factor (PFC)	EN6100-3-2
AC Input range	$85-123 / 176-264 \mathrm{Vac}$
DC Input range	$210-375 \mathrm{Vdc}$
Frequency	$47-63 \mathrm{~Hz} .500 \mathrm{~Hz}$
Input 3 - Phase	
Nominal voltage	$380-480 \mathrm{Vac}$
Power factor (PFC)	EN6100-3-2
AC Input range	$340-576 \mathrm{Vac}$
DC Input range	$450-820 \mathrm{Vdc}$
Frequency	$47-63 \mathrm{~Hz}, 500 \mathrm{~Hz}$
Phase	$1 \varnothing$ or $3 \varnothing$ on $5,10 \& 20 \mathrm{~A}$ models
	30 A and 40 A models are 30 only

Output	
Nominal voltage	$24 \mathrm{~V}(22.5-28.5 \mathrm{Vdc}$ adj. $)$
Hold up time	$>20 \mathrm{~ms}$ at full load $\left(25^{\circ} \mathrm{C}\right)$
Tolerance	$< \pm 2 \%$ overall (combination
	line/load/time/temp)
Line regulation	$<0.5 \%$
Load regulation	$<0.5 \%$
Time \& temp. drift	$<1 \%$
Initial voltage setting	$24.5 \mathrm{~V} \pm 1 \%$
Ripple	$<50 \mathrm{mV}$ pp
Power back immunity	$>35 \mathrm{~V}$
Parallel operation	
ADN20-24-1PM	Switch selectable
ADN40-24-3PM	Active single wire parallel
All others	Jumper selectable via front panel
Overvoltage protection	$>30.5<33 \mathrm{Vdc}$

Power	Voltage	Current	Size Lx W x H (mm)	Weight	Model Number
60 M	85-264 Vac	$2.5 \mathrm{~A}^{*}$	4.88 " $\times 1.97{ }^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 50 \times 116)$	1.6 lbs. (725g)	ADN2.5-24-1PM
100 W	85-132/176-264 Vac	$3.8 \mathrm{~A}^{*}$	$2.95{ }^{\prime \prime} \times 2.85^{\prime \prime} \times 3.80$ " (75 x 72.4×96.5)	$2.4 \mathrm{lbs} .(1055 \mathrm{~g})$	ADN4-24-1PP
	85-132/176-264 Vac	4.0 A	$4.88^{\prime \prime} \times 2.56^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 65 \times 116)$	2.4 lbs. (1055g)	ADN4-24-1PM
120 W	85-132/176-264 Vac	5 A	$4.88^{\prime \prime} \times 2.56^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 65 \times 116)$	$2.4 \mathrm{lbs} .(1055 \mathrm{~g})$	ADN5-24-1PM
	380-480 Vac	5 A	$4.88{ }^{\prime \prime} \times 2.91^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 73 \times 116)$	2.4 lbs. (1055g)	ADN5-24-3PM
240 W	85-132/176-264 Vac	10 A	4.88 " $\times 3.26$ " $\times 4.55^{\prime \prime}(124 \times 82.8 \times 116)$	$3.3 \mathrm{lbs} .(1480 \mathrm{~g})$	ADN10-24-1PM
	380-480 Vac	10 A	$4.88^{\prime \prime} \times 6.88^{\prime \prime} \times 4.66^{\prime \prime}(124 \times 174.8 \times 118.4)$	$2.16 \mathrm{lbs} .(980 \mathrm{~g})$	ADN10-24-3PM
480 W	85-132/176-264 Vac	20 A	$4.88^{\prime \prime} \times 3.50$ " $4.55^{\prime \prime}(124 \times 89 \times 116)$	$3.4 \mathrm{lbs} .(1520 \mathrm{~g})$	ADN20-24-1PM
	380-480 Vac	20 A	$4.88^{\prime \prime} \times 6.88^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 174.8 \times 116)$	3.97 lbs. (1800g)	ADN20-24-3PM
720 W	380-480 Vac	30 A	4.88 " $\times 9.72^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 247 \times 116)$	$4.0 \mathrm{lbs} .(2000 \mathrm{~g})$	ADN30-24-3PM
960 W	380-480 Vac	40 A	4.88 " $\times 11.10^{\prime \prime} \times 4.55^{\prime \prime}(124 \times 282 \times 116)$	$6.6 \mathrm{lbs} .(3300 \mathrm{~g})$	ADN40-24-3PM

[^6]
MicroTCA
 MTC600 Series 600 Watts

Special Features

- 600 W output power
- 16 Channels of 12 V @ 7.6 A max 3.3 V @ 150 mA max
- Supports:

12x AMC's
2x MCH's
2x CU's

- Supports $\mathrm{N}+1$ output redundancy, $\mathrm{N} \leq 3$
- Supports $1+1$ input redundancy

Compliance

- PICMG MicroTCA. 0 (Revision 1.0)
- PICMG HPM. 1 Firmware Upgrade (Revision 1.0)

Electrical Specifications

Input Single Phase

-48 Vdc Models

Input range (operating)	-39.5 to -72 Vdc	Supports -48V and -60 V battery plants
Input range (non-operating)	0 to -39.5 Vdc -72 to -75 Vdc	Power Module may or may not operate in part of this range, but will not be damaged
Reverse ploarity protection	Included	Protected against reverse polarity over magnitude of specified input range
AC Models		
Input range (operating)	90 to 264 Vac	Supports typical worldwide single-phase inputs
Input range (non-operating)	0 to 90 Vac 264 to 282 Vac	Power Module may or may not be operating in part of this range, but will not be damaged
Power factor	0.99 typical	Meets EN61000-3-2
Output - All Models		
12 V Outputs (Payload Power)		
Setpoint	12.6 Vdc typical	Configured as Primary PM Configured as Redundant PM
Total regulation range	12.25 to 12.95 Vdc 11.60 to 12.00 Vdc	Configured as Primary PM Configured as Redundant PM
Rated load	600 W maximum 80 W / 7.6 A maximum	Per power module, input voltage Per load channel
Minimum load	No load	No loss of regulation $\geq 110 \mathrm{Vrms}$
Output rise time (per channel)	25 ms maximum	With $1600 \mu \mathrm{~F}$ on output under test
Output noise (PARD)	75 mV maximum 100 mV maximum	0 to 30 MHz 0 to 100 MHZ Measured with a $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitor on any output and oscilloscope bandwidth set for 200 MHz

Electrical Specifications

Output - All Models (continued)

3.3 V Outputs (Management Power)

Setpoint	3.3 Vdc typical	
Total regulation range	3.16 to 3.63 Vdc	
Rated load	8 W maximum 0.5 W / 150 mA maximum	Per power module Per load channel
Minimum load	No load	No loss of regulation $\geq 110 \mathrm{Vrms}$
Output rise time (per channel)	25 ms maximum	With $150 \mu \mathrm{~F}$ on output under test
Output noise (PARD)	50 mV maximum 75 mV maximum	0 to 30 MHz 0 to 100 MHZ Measured with a $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitor on any output
Transient response	3\% maximum deviation 2 ms recovery time	37.5 mA loadstep @ $1 \mathrm{~A} / \mu \mathrm{s}$ referenced to load current and setpoint at onset of transient. Recovery time to within 1% of setpoint at onset of transient

Temperature and Altitude Derating	Safety		
Condition	Temperature	UL, cUL	UL60950-1
Storage non-operating	$-45^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$	CSA	$60950-1$
Cold start	$-20^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$	VDE	$60950-1$
Normal operating	$-5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$		
Short term operating	$45^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$		
Category	Specifications		
Conducted emissions	EN 55022 Class A		
	GR-1089-CORE		
Radiated emissions	EN 55022 Class A		
Electrostatic discharge (ESD)	EN 61000-4-2		
Immunity to radiated fields	EN 61000-4-3		
Electrical fast transients (burst)	EN 61000-4-4		
Surge immunity	EN 61000-4-5		
Immunity to conducted noise	EN 61000-4-6		

Ordering Information

DC-DC Converters

Distributed Power Architecture

Emerson Network Power understands the needs and nuances of developing power systems using a Distributed Power Architecture. We know it is your job to create the most efficient, cost-effective, quality system, and deliver it in a timely fashion. From full-system power to board-level
components, high-power isolated front ends to a full line of isolated and non-isolated DC-DC modules, Emerson Network Power is the source for today's power systems.

Advanced Telecommunication Computing Architecture (ATCA)

AtuanceenICA ${ }^{\circledR}$

Special Features

- Fully integrated input power module and intermediate bus converter solution for high density ATCA applications
- OR'ing for A/B Dual 48 Vdc power feeds
- Hot swap capability with inrush protection
- EMI filtering
- Independent 50 V clamp output for charging external hold up capacitors
- 6 W of 3.3 Vdc management supply
- 210 W of 12 Vdc output
- Hardware alarms via opto-isolators for loss of A or B feeds
- $I^{2} C$ serial bus interface for monitoring and reporting
- Programmable alarm thresholds via $I^{2} C$
- International safety standards approvalsUL, CSA, TÜV and CB report

Vout	lout	Input Voltage	Package $\mathrm{LxW} \mathbf{W H}(\mathrm{mm})$	Efficiency	Model Number
$12.0 / 3.3 \mathrm{~V}$	ATCA Open-frame				
	$17.5 / 1.8$	$-48 \mathrm{~V}(-36$ to $-72 \mathrm{~V})$	$2.32^{\prime \prime} \times 1.81^{\prime \prime} \times 0.83^{\prime \prime}(58.93 \times 45.97 \times 21.08)$	89%	ATC210-48D12-03J

Note:

ATCA and the ATCA logo are trademarks of the PCI Industrial Computers Manufacturers Group.

ATCA Blades with Real Estate Constraints

The ATC210 provides board designers with an easy to use fullyintegrated power module for space constrained blades and AMCs.

The ATC210 is a fully-integrated module that is more than just a power converter. It also provides power interface and power management functionality. The power interface functions include OR'ing, filtering, inrush control and auxiliary 6 W 3.3 Vdc output, while power
management functionality is facilitated by both $I^{2} \mathrm{C}$ serial bus and direct hardware alarms for loss of A or $\mathrm{B}-48 \mathrm{Vdc}$ input feeds or open fuses. The ATC210 provides ATCA board designers with a compact and optimized solution for space constrained blades and AMCs.

Sixteenth-Brick

Special Features

- Industry leading: sixteenth-brick standard package and feature sets
- Small form factor delivering up to 25 A/60 W
- Mechanical options for optimum mounting flexibility: Through-hole (default) or surface mount (suffix "-S") termination; 5mm (default) or 3.7 mm through-hole pin length option
- Meets basic insulation
- Power densities as high as 146.5 W per cubic inch

Vout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
1.2 V	Open-frame				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	1.3×0.9 " $\times 0.35{ }^{\prime \prime}(33 \times 22.86 \times 8.89)$	84\%	ALD25K48N-L
1.5 V	Open-frame				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$1.3^{\prime \prime} \times 0.9$ " $\times 0.35$ " $(33 \times 22.86 \times 8.89)$	85\%	ALD25M48N-L
1.8 V	Open-frame				
	25 A	48 V ($36-75 \mathrm{~V}$)	$1.3^{\prime \prime} \times 0.9$ " $\times 0.35$ " $(33 \times 22.86 \times 8.89)$	88\%	ALD25Y48N-L
2.5 V	Open-frame				
	20 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	1.3 " $\times 0.9$ " $\times 0.35$ " ($33 \times 22.86 \times 8.89$)	89\%	ALD20G48N-L
3.3 V	Open-frame				
	18A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$1.3^{\prime \prime} \times 0.9^{\prime \prime} \times 0.35$ " $(33 \times 22.86 \times 8.89)$	90\%	ALD18F48N-L
5 V	Open-frame				
	12 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$1.3^{\prime \prime} \times 0.9$ " $\times 0.35$ " ($33 \times 22.86 \times 8.89$)	91\%	ALD12 A48N-L

Footprint/Package Leverage

Common Features

Open-frame or baseplate
Thru-hole or SMT
3.7 mm or 5 mm pin length

Negative or Positive enable
Designing multiple footprints maximizes product availability (supply) and creates greatest cost/price leverage

Eighth-Brick

Special Features

- Industry leading: eighth-brick standard package and feature-sets
- Scalable output power offering: Low power 80 W series or up to 120 W high power series
- Mechanical options for optimum mounting flexibility: Open-frame (ALO or LES) or baseplate (AEO) construction; Through-hole (default) or surface mount (suffix "-S") termination; 5 mm (default) or 3.7 mm through-hole pin length option
- Meets basic insulation
- Power densities as high as 181 W per cubic inch
- Wide-operating temperature range

Vout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
1.0 V	Open-frame				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3^{\prime \prime} \times 0.9$ " $\times 0.36$ " (58.42 $\times 22.86 \times 9.14$)	85\%	LES25B48-1V0REJ
1.2 V	Open-frame				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3^{\prime \prime} \times 0.9$ " $\times 0.36$ " (58.42 $\times 22.86 \times 9.14$)	86\%	LES25B48-1V2REJ
	50 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.34$ " ($58.42 \times 22.86 \times 8.64$)	86\%	LES50A48-1V2REJ
	Baseplate				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3^{\prime \prime} \times 0.9$ " $\times 0.4$ " ($\left.58.42 \times 22.86 \times 10.16\right)$	85\%	AEO25K48N-L
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	86\%	AEO40K48N-L
1.5 V	Open-frame				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.36$ " ($58.42 \times 22.86 \times 9.14)$	88\%	LES25B48-1V5REJ
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13$)	88\%	ALO40M48N-L
	Baseplate				
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16)$	86\%	AEO25M48N-L
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	88\%	AEO40M48N-L
1.8 V	Open-frame				
	20 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.3 " x 0.9 " $\times 0.34$ " ($58.42 \times 22.86 \times 8.64$)	91\%	LES20A24-1V8REJ
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.36$ " ($58.42 \times 22.86 \times 9.14)$	89\%	LES25B48-1V8REJ
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13$)	90\%	ALO40Y48N-L
	Baseplate				
	25 A	48 V (36-75 V)	$2.3^{\prime \prime} \times 0.9$ " $\times 0.4$ " ($\left.58.42 \times 22.86 \times 10.16\right)$	87\%	AEO25Y48N-L
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	90\%	AEO40Y48N-L
2.5 V	Open-frame				
	22 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.36$ " (58.42 " 22.86×9.14)	91\%	LES22B48-2V5REJ
	40 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.34$ " (58.42 " $\times 22.86 \times 8.64$)	91\%	LES40 A48-2V5REJ
	Baseplate				
	20 A	48 V ($36-75 \mathrm{~V}$)	$2.3^{\prime \prime} \times 0.9$ " $\times 0.4$ " ($\left.58.42 \times 22.86 \times 10.16\right)$	90\%	AEO20G48N-L
	35 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16)$	90\%	AEO35G48N-L
3.3 V	Open-frame				
	20 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.34$ " ($58.42 \times 22.86 \times 8.64)$	90\%	LES20A24-3V3REJ
	20 A	$24 \mathrm{~V} / 48 \mathrm{~V}(19-60 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13)$	91\%	ALO20F36N-L
	20 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.36$ " ($58.42 \times 22.86 \times 9.14$)	91\%	LES20B48-3V3REJ
	30 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13$)	91\%	ALO30F48N-L
	Baseplate				
	20 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16)$	91\%	AEO20F48N-L
	30 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	91\%	AEO30F48N-L

Vout	Iout	Input Voltage	Package L \times W \times H (mm)	Efficiency	Model Number
5 V	Open-frame				
	13 A	48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 0.9$ " $\times 0.36$ " ($58.42 \times 22.86 \times 9.14$)	92\%	LES13B48-5V0REJ
	20 A	48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13$)	93\%	ALO20A48N-L
	Baseplate				
	12 A	48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	93\%	AEO12A48N-L
	20 A	48 V ($36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16$)	92\%	AEO20A48N-L
12 V	Open-frame				
	6.7 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.36$ " ($58.42 \times 22.86 \times 9.14$)	93\%	LES06B48-12V0REJ
	10 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.32$ " ($58.42 \times 22.86 \times 8.13$)	92\%	ALO10B48N-L
	Baseplate				
	4 A 10 A	$\begin{aligned} & 48 \mathrm{~V}(36-75 \mathrm{~V}) \\ & 48 \mathrm{~V}(36-75 \mathrm{~V}) \end{aligned}$	2.3 " $\times 0.9$ " $\times 0.4$ " ($58.42 \times 22.86 \times 10.16)$ 2.3 " $\times 0.9$ " 0.4 ($58.42 \times 22.86 \times 10.16)$	93\% 92\%	AEO04B48N-L AEO10B48N-L

Quarter-Brick

Special Features

- Single output quarter-brick, up to 100 A
- Wide operating temperature range
- Rich feature sets: UVLO, enable, on/off, OCP, OVP, OTP, differential remote sense, output trim
- Meets basic insulation
- Exceptional dynamic response and reactive loading capability
- Monotonic start-up characteristic
- Open and baseplated versions

Quarter Brick Dual

ALQ15GM48N

LQD25

Special Features

- Drop-in replacement for several widely used dual output quarter-bricks
- Independent control loop eliminates cross regulation
- Tightly regulated individual output channels
- Clean, fast transient load response
- Open-frame construction

Vout	Iout ${ }^{\text {Input Voltage }}$	Package L \times W x H (mm)	Efficiency	Model Number
2.5 V \|1.5 V	Open-frame			
	15/15 A $48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3 \times 1.48{ }^{\prime \prime} \times 0.5$ " ($\left.58.42 \times 37.59 \times 12.7\right)$	84\%	ALQ15GM48N-L
3.3 V \| 1.8 V	Open-frame			
	15/15 A $48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3×1.48 " $\times 0.5$ " ($58.42 \times 37.59 \times 12.7)$	87\%	ALQ15FY48N-L
3.3 V \| 2.5 V	Open-frame			
	15/15 A 48 V ($36-75 \mathrm{~V}$)	2.3×1.48 " $\times 0.5$ " ($58.42 \times 37.59 \times 12.7)$	88\%	ALQ15FG48N-L
	Baseplate			
	12/16A 48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 1.50$ " $\times 0.5$ " ($58.42 \times 38.10 \times 12.7)$	91\%	EXQ60-48D3V3-2V5-RJ
5.0 V \| 3.3 V	Open-frame			
	10/15 A 48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 1.45$ " $\times 0.3$ " ($58.42 \times 36.83 \times 7.62$)	91\%	LQD25 A48-5V03V3REJ
	Baseplate			
	12/15 A 48 V ($36-75 \mathrm{~V}$)	2.3 " $\times 1.5$ " $\times 0.5$ " ($58.42 \times 38.10 \times 12.7$)	92\%	EXQ60-48D05-3V3-RJ

Half Brick

EXB250

AEH80

Special Features

- Industry standard half-brick available up to 80 A
- Open-frame and baseplate construction
- Open-frame has heat sink adapter for conductive cooling applications
- Highest efficiencies available
- Optimum transient load performance and reactive loading capacity
- Wide operating temperature range

Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
1.2 V	Open-frame				
	60 A	48 V (36-75 V)	2.4 " $\times 2.3^{\prime \prime} \times 0.42^{\prime \prime}(60.96 \times 58.42 \times 10.67)$	86\%	ALH60K48N-L
	80 A	48 V (36-75 V)	2.4 " $2.33^{\prime \prime} \times 0.42^{\prime \prime}(60.96 \times 58.42 \times 10.67)$	83\%	ALH80K48N-3L
	Baseplate				
	60 A	48 V (33-75 V)	2.4 " $\times 2.28^{\prime \prime} \times 0.5^{\prime \prime}(60.96 \times 57.91 \times 12.7)$	85\%	EXB250-48S1V2-RJ
	80 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.4 " \times 2.3^{\prime \prime} \times 0.5^{\prime \prime}(60.96 \times 58.42 \times 12.7)$	83\%	AEH80K48N-3L
1.5 V	Open-frame				
	80 A	48 V ($36-75 \mathrm{~V}$)	$2.3^{\prime \prime} \times 2.4$ " $\times 0.4$ " ($58.42 \times 60.96 \times 10.16$)	86\%	ALH80M48N-3L
	Baseplate				
	60 A	48 V (33-75 V)	$2.4^{\prime \prime} \times 2.28^{\prime \prime} \times 0.5^{\prime \prime}(60.89 \times 57.91 \times 12.7)$	86\%	EXB250-48S1V5-RJ
	80 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(58.42 \times 60.96 \times 12.7)$	86\%	AEH80M48N-3L
1.8 V	Open-frame				
	60 A	48 V (36-75 V)	$2.4^{\prime \prime} \times 2.3^{\prime \prime} \times 0.42^{\prime \prime}(60.96 \times 58.42 \times 10.67)$	89\%	ALH60Y48N-L
	60 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " 2.3 " $\times 0.42^{\prime \prime}(60.96 \times 58.42 \times 10.67)$	87\%	ALH80Y48N-3L
	Baseplate				
	60 A	48 V (33-75 V)	2.4 " $\times 2.28^{\prime \prime} \times 0.5^{\prime \prime}(60.96 \times 57.91 \times 12.7)$	87\%	EXB250-48S1V8-RJ
	80 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.4 " \times 2.3^{\prime \prime} \times 0.5$ " ($\left.60.96 \times 58.42 \times 12.7\right)$	87\%	AEH80Y48N-3L
2.0 V	Open-frame				
	8 A	48 V (36-75 V)	2.4 " $\times 2.28$ " $\times 0.43$ " (60.96 $\times 57.91 \times 10.92$)	86\%	EXB30-48S2V0J
2.5 V	Open-frame				
	60 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.40 " 2.3 " $\times 0.42$ " ($60.96 \times 58.42 \times 10.67$)	90\%	ALH60G48N-L
	Baseplate				
	60 A	48 V (33-75 V)	2.4 " $\times 2.28^{\prime \prime} \times 0.5^{\prime \prime}(60.96 \times 57.91 \times 12.7)$	88\%	EXB250-48S2V5-RJ
3.3 V	Open-frame				
	8 A	48 V (36-75 V)	2.4 " $\times 2.28^{\prime \prime} \times 0.43^{\prime \prime}(60.96 \times 57.91 \times 10.92)$	90\%	EXB30-48S3V3J
	10 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.28^{\prime \prime} \times 0.43^{\prime \prime}(60.96 \times 57.91 \times 10.92)$	90\%	EXB50-48S3V3J
	30 A	48 V (36-75 V)	2.4 " $\times 2.28^{\prime \prime} \times 0.39^{\prime \prime}(60.96 \times 57.91 \times 9.91)$	91\%	EXB100-48S3V3-RJ
	60 A	48 V (36-75 V)	2.4 " $\times 2.3^{\prime \prime} \times 0.42^{\prime \prime}(60.96 \times 58.42 \times 10.67)$	91\%	ALH60F48N-L

Vout	Iout	Input Voltage	Package Lx W x H (mm)	Efficiency	Model Number
3.3 V	Baseplate				
	30 A	24 V (18-36 V $)$	2.4 " 2.3 " $\times 0.5$ " ($60.96 \times 57.91 \times 12.7)$	77\%	BXB150-24S3V3FLTJ
	50 A	48 V (33-75 V)	2.4 " $\times 2.3$ " $\times 0.5$ " ($60.96 \times 57.91 \times 12.7)$	90\%	EXB250-48S3V3-RJ
	60 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.3$ " $\times 0.5$ " ($60.96 \times 58.42 \times 12.7)$	91\%	AEH60F48N-L
5 V	Open-frame				
	10 A	48 V ($36-75 \mathrm{~V}$)	2.4 " 2.28 " $\times 0.43$ " ($60.96 \times 57.91 \times 10.92)$	91\%	EXB50-48S05-RJ
	20 A	48 V ($36-75 \mathrm{~V}$)	2.4 " $\times 2.28$ " $\times 0.39$ " ($60.96 \times 57.91 \times 9.91$)	92\%	EXB100-48S05-RJ
	Baseplate				
	33 A	$48 \mathrm{~V}(33-75 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.5$ " ($60.96 \times 57.91 \times 12.7)$	92\%	EXB250-48S05-RJ
12 V	Open-frame				
	2.5 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.43$ " (60.96 $\times 57.91 \times 10.92)$	90\%	EXB30-48S12J
	4.2 A	48 V ($36-75 \mathrm{~V}$)	2.4 " $\times 2.28$ " $\times 0.43$ " ($60.96 \times 57.91 \times 10.92)$	90\%	EXB50-48S12J
	Baseplate				
	8.33 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.5$ " (60.96 $\times 57.91 \times 12.7)$	85\%	BXB100-24S12FLTJ
	13.75 A	$48 \mathrm{~V}(33-75 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.5$ " ($60.96 \times 57.91 \times 12.7)$	92\%	EXB250-48S12-RJ
	25 A	48 V ($36-75 \mathrm{~V}$)	2.4 " $\times 2.30$ " $\times 0.5$ " ($60.96 \times 58.42 \times 12.7)$	94\%	AEH25B48N-L
	29.17 A	48 V ($36-75 \mathrm{~V}$)	2.4 " $\times 2.30$ " $\times 0.5$ " ($60.96 \times 58.42 \times 12.7)$	94\%	AEH30B48N-L
15 V	Baseplate				
	8.33 A	24 V (18-36 V $)$	2.40 " $\times 2.28$ " $\times 0.50$ " ($60.96 \times 57.91 \times 12.70$)	83\%	BXB50-24S15FLTJ
52 V	Baseplate				
	7.55 A	48 V ($38-60 \mathrm{~V}$)	2.40 " 2.28 " $\times 0.50$ " (60.96 $\times 57.91 \times 12.70$)	93\%	AEH08U48N-L

Industry Standard Isolated - Half-Brick Dual

Half Brick Dual

	Current	Input Voltage	Package L \times W $\times \mathrm{H}$ (mm)	Efficiency	Model Number
1.8-3.3 V	Open-frame				
	8.5/8.5 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " 2.28 " $\times 0.39$ " (60.96 $\times 57.91 \times 9.91$)	86\%	EXB50-48D3V3-1V8J
3.3/5 V	Open-frame				
	6/6 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.5$ " (60.96 $\times 57.91 \times 12.7)$	87\%	EXB30-24D05-3V3J
	6/6 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.28$ " $\times 0.5$ " ($60.96 \times 57.91 \times 12$.	88\%	EXB30-48D05-3V3J
	7.5/7.5 A	48 V ($36-75 \mathrm{~V}$)	2.4 " $\times 2.28$ " $\times 0.39$ " (60.96 $\times 57.91 \times 9.91$)	89\%	EXB50-48D05-3V3-RJ

RF Power Bricks

RFF700

Special Features

- Specialized high power bricks for RF applications such as base station power amplifiers
- Offered in 24 V and 48 V input voltages
- Wide output voltage adjustability
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ baseplate temperature with no derating at rated power

Half-Brick

Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
7.2-13.2V	Baseplate				
	25 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.4 " $\times 2.27$ " $\times 0.5$ " ($60.96 \times 57.66 \times 12.7)$	86\%	RFB300-24S12-R5Y
	29.2 A	48 V (36-75 V $)$	2.4 " x 2.27 " $\times 0.5$ " ($60.96 \times 57.66 \times 12.7)$	86\%	RFB350-48S12-R5Y
16.8-29.4 V	Baseplate				
	11 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	2.4 " $\times 2.27$ " $\times 0.5$ " ($60.96 \times 57.66 \times 12.7)$	90\%	RFB300-24S28-R5Y
	11 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.27$ " $\times 0.5$ " ($60.96 \times 57.66 \times 12.7)$	91\%	RFB300-48S28-R5Y
	12.5 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.4 " $\times 2.27$ " $\times 0.5$ " ($60.96 \times 57.66 \times 12.7)$	91\%	RFB350-48S28-R5Y

Full-Brick

Vout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
16.8-29.4V Baseplate					
	17.9 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	90\%	RFF500-24S28-5Y
	17.9 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	4.6 " $\times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	91\%	RFF500-48S28-5Y
	21.4 A	$24 \mathrm{~V}(18-36 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	90\%	RFF600-24S28-5Y
	21.4 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	91\%	RFF600-48S28-5Y
	25 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	4.6 " $\times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	91\%	RFF700-48S28-5Y

Bus Converters

Special Features

- Industry standard footprints
- Wide-operating temperature range $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ case (baseplate) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient (open-frame)
- Rich feature sets: overvoltage, over temperature protection, on/off enable
- Meets basic insulation
- Wide or narrow input voltage range, open loop or semi-regulated output for telecom and enterprise applications

Sixteenth-Brick

	lout	Input Voltage	Package L \times W $\times \mathrm{H}$ (mm)	Efficiency	Model Number
9.6 V	Open-frame				
	17 A	$48 \mathrm{~V}(38-55 \mathrm{~V})$	1.3 " $\times 0.9$ " $\times 0.35$ " ($33.02 \times 22.86 \times 8.89$)	96\%	ALD17Q50N-L
	Baseplate				
	17 A	48 V (38-55V)	$1.4^{\prime \prime} \times 0.9$ " $\times 0.54$ " ($35.56 \times 22.86 \times 13.72$)	96\%	AED17Q50N-L

Eighth-Brick

	lout	Input Voltage	Package LxWxH (mm)	Efficiency	Model Number
9.6 V	Open-frame				
	32 A	48 V (38-55V)	2.3 " $\times 0.9$ " $\times 0.48$ " ($58.42 \times 22.86 \times 12.19)$	97\%	IBC32AEN4896-REJ
12 V	Open-frame				
	17 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.45$ " ($58.42 \times 22.86 \times 11.43$)	94\%	IBC17AEW4812-REJ
	20 A	$48 \mathrm{~V}(42-53 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.45^{\prime \prime}(58.42 \times 22.86 \times 11.43)$	95\%	IBC20AES4812-REJ
	25 A	$48 \mathrm{~V}(42-53 \mathrm{~V})$	2.3 " $\times 0.9$ " $\times 0.45$ " ($58.42 \times 22.86 \times 11.43$)	96\%	IBC25AET4812-REJ

Quarter-Brick

9.6 V	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
	Open-frame				
	60 A	48 V (38-55 V)	2.3 " $\times 1.45^{\prime \prime} \times 0.48$ " ($\left.58.42 \times 36.83 \times 12.19\right)$	97\%	IBC60AQN4896-REJ
12 V	Open-frame				
	28 A	$48 \mathrm{~V}(36-75 \mathrm{~V})$	$2.3^{\prime \prime} \times 1.45^{\prime \prime} \times 0.45^{\prime \prime}(58.42 \times 36.83 \times 11.43)$	95\%	IBC28AQW4812-REJ
	30 A	$48 \mathrm{~V}(42-53 \mathrm{~V})$	2.3 " $\times 1.45$ " $\times 0.45$ " ($58.42 \times 36.83 \times 11.43)$	95\%	IBC30AQS4812-REJ
	37.5 A	$48 \mathrm{~V}(42-53 \mathrm{~V})$	2.3 " $\times 1.45$ " $\times 0.45$ " ($58.42 \times 36.83 \times 11.43)$	96\%	IBC38AQT4812-REJ
	42 A	$48 \mathrm{~V}(36-55 \mathrm{~V})$	2.3 " $\times 1.48$ " $\times 0.45$ " ($58.42 \times 36.59 \times 11.43)$	97\%	ALQ42B50N-L
	Basepla				
	42 A	$48 \mathrm{~V}(36-55 \mathrm{~V})$	2.3 " $\times 1.48$ " $\times 0.52^{\prime \prime}(58.42 \times 36.59 \times 13.21)$	97\%	AEQ42B50N-L

C-Class - Economy

The $1^{\text {st }}$ generation C-Class non-isolated dc - dc converters are designed to provide good efficiency and performance.

SIL20C

SMT40C

SMT30C

SMT06C

Special Features

- Input voltage ranges: 4.5-5.5 V or 10.2-13.8 V
- Wide output voltage trim/adjustability: 0.9 to 5 Vdc
- Output current: 6 A to 40 A
- High efficiency up to 92%
- Remote on/off
- Power good
- Parallel operation/current share (SIL30C and SIL40C)
- Remote sense (SIL30C and SIL40C)
- Excellent transient response
- Operating temperature range for SIL20C2 and SIL40C2: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Protection: overcurrent/short-circuit
- Cost optimized design - industry leading value
- Compact footprint, vertical, horizontal and horizontal SMT options
- International safety standard approvals UL, CSA, TÜV \& CB Report

General-Purpose C-Class Non-isolated DC-DC Converters

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
Single-In-Line, Through-hole Mounting					
6 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	89\%	$1.2^{\prime \prime} \times 0.45 \times 0.61^{\prime \prime}(30.48 \times 11.43 \times 15.49)$	SIL06C-05SADJ-VJ
6 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 0.45 \times 0.61^{\prime \prime}(30.48 \times 11.43 \times 15.49)$	SIL06C-12SADJ-VJ
15 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	89\%	$1.2^{\prime \prime} \times 0.4$ " $\times 1.1^{\prime \prime}(30.48 \times 10.16 \times 27.94)$	SIL15C-05SADJ-VJ
15 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 0.4$ " $\times 1.1^{\prime \prime}(30.48 \times 10.16 \times 27.94)$	SIL15C-12SADJ-VJ
20 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	87\%	$1.2^{\prime \prime} \times 0.45$ " $\times 1.1^{\prime \prime}(30.48 \times 10.16 \times 27.94)$	SIL20C-05SADJ-VJ
20 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 0.45^{\prime \prime} \times 1.1^{\prime \prime}(30.48 \times 10.16 \times 27.94)$	SIL20C-12SADJ-VJ
25 A	10.2 to 13.8 Vdc	-4.5 to -5.5 V	90\%	2.4 " $\times 0.52^{\prime \prime} \times 1.25^{\prime \prime}\left(60.96 \times 13.21^{\prime \prime} \times 31.75\right)$	SIL25C-12SNEG-VJ
30 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$2.4 " \times 0.52^{\prime \prime} \times 1.25^{\prime \prime}\left(60.96 \times 13.21^{\prime \prime} \times 31.75\right)$	SIL30C-12SADJ-VJ
40 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	92\%	2.4 " $\times 0.52^{\prime \prime} \times 1.25^{\prime \prime}(60.96 \times 13.21$ " $\times 31.75$)	SIL40C-12SADJ-VJ
Surface-Mounting					
6 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	89\%	$1.2^{\prime \prime} \times 0.53^{\prime \prime} \times 0.47^{\prime \prime}(30.48 \times 13.46 \times 11.94)$	SMT06C-05SADJJ
6 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 0.53$ " $\times 0.47$ " $(30.48 \times 13.46 \times 11.94)$	SMT06C-12SADJJ
15 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	89\%	$1.2^{\prime \prime} \times 1.1^{\prime \prime} \times 0.46$ " ($30.48 \times 27.94 \times 11.68$)	SMT15C-05SADJJ
15 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 1.1^{\prime \prime} \times 0.46$ " ($30.48 \times 27.94 \times 11.68$)	SMT20C-12SADJJ
20 A	4.5 to 5.5 Vdc	0.9 to 3.3 V	87\%	$1.2^{\prime \prime} \times 1.14$ " $\times 0.46^{\prime \prime}(30.48 \times 28.96 \times 11.68)$	SMT15C-12SADJJ
20 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$1.2^{\prime \prime} \times 1.14$ " $\times 0.46$ " ($30.48 \times 28.96 \times 11.68$)	SMT20C-05SADJJ
30 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	91\%	$2.28 \times 1.45 \times 0.43\left(57.91^{\prime \prime} \times 36.83 \times 10.92\right)$	SMT30C-12SADJJ
40 A	10.2 to 13.8 Vdc	0.9 to 5.0 V	92\%	$2.28 \times 1.45 \times 0.43\left(57.91^{\prime \prime} \times 36.83 \times 10.92\right)$	SMT40C-12SADJJ

C-Class - High Density

The $2^{\text {nd }}$ generation C-Class non-isolated dc-dc converters are designed to provide good efficiency and performance, a smaller footprint, and integrated input and output capacitors.

LDO03C

LDO06C

Special Features

- Wide input voltage ranges: 3 to 13.8 V or $4.5-13.8 \mathrm{~V}$
- Wide output voltage trim/adjustability: 0.59 to 5.1 V
- Output current: 3 A to 40 A
- High efficiency up to 94%
- Remote on/off
- Power good
- Remote sense (Sxx20C2 and Sxx40C2)
- Excellent transient response
- Current sink capability for termination applications
- Operating temperature range for LDO03, LDO06 and LDO10: $-40^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
- Operating temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Protection: over current/short-circuit
- No added input or output capacitors needed for ripple current capability or stability
- Cost optimized design - industry leading value
- Compact footprint, vertical, horizontal and horizontal SMT options
- International safety standard approvals - UL, CSA, TUV \& CB Report

General-Purpose C-Class Non-isolated DC-DC Converters

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
Single-In-Line, Through-hole Mounting					
3 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	90\%	0.37×0.21 " $\times 0.61$ " ($9.4 \times 5.33 \times 15.49$)	LDO03C-005W05-VJ
6 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	92\%	$0.41{ }^{\prime \prime} \times 0.37{ }^{\prime \prime} \times 0.65^{\prime \prime}(10.41 \times 9.4 \times 16.51)$	LDO06C-005W05-VJ
10 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	94\%	$0.41^{\prime \prime} \times 0.45{ }^{\prime \prime} \times 0.65^{\prime \prime}(10.41 \times 11.43 \times 16.51)$	LD010C-005W05-VJ
20 A	4.5 to 13.8 Vdc	0.59 to 5.1 V	93\%	$1.2^{\prime \prime} \times 0.46$ " $\times 0.61$ " ($30.48 \times 11.68 \times 15.49$)	SIL20C2-00SADJ-VJ
40 A	4.5 to 13.8 Vdc	0.6 to 5.0 V	94\%	$1.2^{\prime \prime} \times 0.43$ " $\times 1.1^{\prime \prime}(30.48 \times 10.92 \times 27.94)$	SIL40C2-00SADJ-VJ
Surface-Mounting					
3 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	90\%	0.61 " $\times 0.37$ " $\times 0.29$ " ($15.49 \times 9.4 \times 7.37)$	LDO03C-005W05-SJ
6 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	92\%	$0.65^{\prime \prime} \times 0.41^{\prime \prime} \times 0.44^{\prime \prime}(16.51 \times 10.41 \times 11.18)$	LDO06C-005W05-SJ
10 A	3.0 to 13.8 Vdc	0.59 to 5.1 V	94\%	0.65 " $\times 0.41{ }^{\prime \prime} \times 0.52^{\prime \prime}(16.51 \times 10.41 \times 13.21)$	LD010C-005W05-SJ
20 A	4.5 to 13.8 Vdc	0.59 to 5.1 V	93\%	$1.2^{\prime \prime} \times 0.61$ " $\times 0.48$ " ($30.48 \times 15.49 \times 12.19$)	SMT20C2-00SADJJ
40 A	4.5 to 13.8 Vdc	0.6 to 5.0 V	94\%	$1.2^{\prime \prime} \times 1.1^{\prime \prime} \times 0.44$ " $(30.48 \times 27.94 \times 11.18)$	SMT40C2-00SADJJ

E-Class - Performance

Efficiencies as high as 96% and current densities up to $140 \mathrm{~A} / \mathrm{in}^{3}$.

SIL05E

Special Features

- Input voltage ranges: 3-5.5 V, 4.5-5.5 V, 8-14 V, 10-14 V
- Wide output voltage trim ranges: 0.8 to 3.63 V and 0.75 to 5.5 V
- Output current: 5 to 30 A and 0.8 to 3.63 V
- Remote on/off
- Remote sense
- Industry standard footprint-vertical and horizontal mounting (low profile SMT/SIP-through-hole)
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Built-in $I^{2} C$ bus interface feature for precision setting of both output voltage and voltage margining product series (SIL15E-12M)
- Protection: overcurrent/short-circuit
- International safety standard approvals UL, CSA, TÜV \& CB Report

General-Purpose E-Class Non-isolated DC-DC Converters

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
Single-In-Line, Through-hole Mounting					
5 A	3.0 to 5.5 Vdc	0.75 to 3.63 V	94\%	0.9 " $\times 0.28$ " $\times 0.4$ " ($22.86 \times 7.11 \times 10.16$)	SIL05E-05W3 V3-VJ
10 A	4.5 to 5.5 Vdc	0.8 to 3.63 V	95\%	2 " $\times 0.31$ " $\times 0.5$ " ($50.8 \times 7.87 \times 12.7$)	SIL10E-05W3 V3-VJ
10 A	10 to 14 Vdc	0.8 to 3.63 V	94\%	$2 " \times 0.31$ " $\times 0.5$ " ($50.8 \times 7.87 \times 12.7$)	SIL10E-12W3 V3-VJ
15 A	3.0 to 5.5 Vdc	0.8 to 3.63 V	94\%	$2 " \times 0.31$ " $\times 0.5$ " ($50.8 \times 7.87 \times 12.7$)	SIL15E-05W3 V3-VJ
15 A	10 to 14 Vdc	0.8 to 3.63 V	94\%	$2 " \times 0.31$ " $\times 0.5$ " ($50.8 \times 7.87 \times 12.7$)	SIL15E-12W3 V3-VJ
18 A	3.0 to 5.5 Vdc	0.75 to 5.5 V	92\%	$2 " \times 0.39 " \times 0.5$ " ($50.8 \times 9.91 \times 12.7)$	APA18T04-9L
18 A	10 to 14 Vdc	0.75 to 5.5 V	92\%	$2 " \times 0.39 " \times 0.5$ " ($50.8 \times 9.91 \times 12.7)$	APA18T12-9L
30 A	8.0 to 14 Vdc	0.8 to 3.63 V	93\%	2 " $\times 0.31$ " $\times 0.5$ " ($50.8 \times 7.87 \times 12.7$)	SIL30E-12W3 V3-VJ
Surface Mounting					
5 A	3.0 to 5.5 Vdc	0.75 to 3.63 V	94\%	0.8 " $\times 0.45$ " $\times 0.26^{\prime \prime}(20.32 \times 11.43 \times 6.6)$	SMT05E-05W3 V3J
5 A	10 to 14 Vdc	0.8 to 3.63 V	91\%	0.8 " $\times 0.45$ " $\times 0.24$ " ($20.32 \times 11.43 \times 6.1$)	SMT05E-12W3 V3J
10 A	3.0 to 5.5 Vdc	0.8 to 3.63 V	96\%	1.3 " $\times 0.53$ " $\times 0.32$ " ($33.02 \times 13.46 \times 8.13$)	SMT10E-05W3 V3J
10 A	10 to 14 Vdc	0.8 to 3.63 V	94\%	1.3 " $\times 0.53$ " $\times 0.32$ " ($33.02 \times 13.46 \times 8.13$)	SMT10E-12W3 V3J
15 A	3.0 to 5.5 Vdc	0.8 to 3.63 V	95\%	1.3 " $\times 0.53$ " $\times 0.32$ " ($33.02 \times 13.46 \times 8.13$)	SMT15E-05W3 V3J
15 A	10 to 14 Vdc	0.8 to 3.63 V	94\%	1.3 " $\times 0.53$ " $\times 0.32$ " ($33.02 \times 13.46 \times 8.13$)	SMT15E-12W3 V3J
18 A	3.0 to 5.5 Vdc	0.75 to 5.5 V	92\%	1.3 " $\times 0.53 \times 0.34(33.02 \times 13.46 \times 8.64)$	APC18T04-9L
18 A	10 to 14 Vdc	0.75 to 5.5 V	92\%	1.3 " $\times 0.53 \times 0.34(33.02 \times 13.46 \times 8.64)$	APC18T12-9L
30 A	8.0 to 14 Vdc	0.8 to 3.63 V	91\%	1.3 " $\times 0.53$ " $\times 0.32$ " ($33.02 \times 13.46 \times 8.13$)	SMT30E-12W3 V3J

F-Class - Fast Transient Response

Highly integrated non-isolated dc-dc modules, combining transient response up to $300 \mathrm{~A} / \mu \mathrm{s}$. Expressly designed to minimize the number of external capacitors needed.

Special Features

- Input voltage ranges: 3-5.5 Vdc, 10.8-13.2 Vdc
- Wide output voltage trim range: 0.9 to 3.3 V (SMT12F)
- Output current: 12 A t o 15 A
- High efficiency: 95\%@ 5 V in 3.3 Vdc output/full load
- Remote on/off
- Differential remote sense
- Power good
- Separate digital inputs for $+5 \%$ and -5% output voltage margining
- Industry standard surface-mount footprint (SMT15F)
- Current densities in excess of $72 \mathrm{~A} / \mathrm{in}^{3}$
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Protection: overcurrent/short-circuit (non-latching) and over temperature
- International safety standard approvals UL, CSA, TÜV \& CB Report

General-Purpose F-Class Non-isolated DC-DC Converters

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
Surface Mounting					
12 A	3 to 5.5 Vdc	0.9 to 3.3 V	95\%	0.63 " $\times 0.52^{\prime \prime} \times 0.31^{\prime \prime}(16 \times 13.21 \times 7.87)$	SMT12F-05W3 V3J
15 A	10.8 to 13.2 Vdc	1.0 V	85\%	1.3 " $\times 0.53$ " $\times 0.3$ " ($33.02 \times 13.46 \times 7.62$)	SMT15F-12S1 V0J
15 A	10.8 to 13.2 Vdc	1.2 V	86\%	$1.3^{\prime \prime} \times 0.53^{\prime \prime} \times 0.3^{\prime \prime}(33.02 \times 13.46 \times 7.62)$	SMT15F-12S1 V2J
15 A	10.8 to 13.2 Vdc	1.5 V	87\%	$1.3^{\prime \prime} \times 0.53^{\prime \prime} \times 0.3^{\prime \prime}(33.02 \times 13.46 \times 7.62)$	SMT15F-12S1 V5J
15 A	10.8 to 13.2 Vdc	1.8 V	88\%	1.3 " $\times 0.53$ " $\times 0.3$ " ($33.02 \times 13.46 \times 7.62$)	SMT15F-12S1 V8J

POLA-DDR/Memory

Choose POLA for memory bus termination modules.

PTH12060Y

PTH05050Y

Special Features

- Input voltage ranges: 2.95-3.65 V, 4.5-5.5V, 10.8-13.2 V
- Wide VTT output voltage trim / adjustability: 0.55 to 1.8 V
- Output current: 6 A to 15 A
- High efficiency up to 88%
- VTT bus termination output (output the system VREF)
- Current sink capability for termination applications
- DDR and QDR compatible
- Pre-bias start-up capability
- Remote on/off
- Remote sense
- Under-voltage lockout
- POLA compatible
- True multi-sourcing flexibility (form, fit and function)
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Protection: overcurrent/short-circuit
- International safety standard approvals - UL, CSA, TÜV \& CB Report

POLA Non-isolated DDR/QDR Memory Bus Termination Modules

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
6 A	2.95 to 3.65 Vdc	0.55 to 1.8 V	88\%	0.87 " $\times 0.495$ " x 0.335 " ($22.01 \times 12.57 \times 8.51$)	PTH03050YAH
6 A	4.5 to 5.5 Vdc	0.55 to 1.8 V	87\%	$0.87{ }^{\prime \prime} \times 0.495^{\prime \prime} \times 0.335^{\prime \prime}(22.01 \times 12.57 \times 8.51)$	PTH05050YAH
6 A	10.8 to 13.2 Vdc	0.55 to 1.8 V	84\%	0.87 " $\times 0.495$ " $\times 0.335$ " ($22.01 \times 12.57 \times 8.51$)	PTH12050YAH
10 A	2.95 to 3.65 Vdc	0.55 to 1.8 V	86\%	$0.995 " \times 0.620^{\prime \prime} \times 0.354 "$ ($25.27 \times 15.75 \times 8.99$)	PTH03060YAH
10 A	4.5 to 5.5 Vdc	0.55 to 1.8 V	86\%	$0.995^{\prime \prime} \times 0.620^{\prime \prime} \times 0.354^{\prime \prime}(25.27 \times 15.75 \times 8.99)$	PTH05060YAH
10 A	10.8 to 13.2 Vdc	0.55 to 1.8 V	83\%	$0.995^{\prime \prime} \times 0.620^{\prime \prime} \times 0.354 "$ ($25.27 \times 15.75 \times 8.99$)	PTH12060YAH
15 A	2.95 to 3.65 Vdc	0.55 to 1.8 V	88\%	1.37 " $\times 0.620 " \times 0.354^{\prime \prime}(34.80 \times 15.75 \times 8.99)$	PTH03010YAH
15 A	4.5 to 5.5 Vdc	0.55 to 1.8 V	88\%	1.37 " x 0.620" x 0.354 " (34.80" $\times 15.75 \times 8.99$)	PTH05010YAH
15 A	10.8 to 13.2 Vdc	0.55 to 1.8 V	85\%	1.37 " $\times 0.620$ " $\times 0.354$ " ($34.80 \times 15.75 \times 8.99$)	PTH12010YAH

POLA - General Purpose

Choose POLA for multi-sourcing.

Special Features

- Input voltage ranges: $2.95-3.65 \mathrm{~V}$, 4.5-5.5 V, 10.8-13.2 V
- Wide output voltage trim and adjustability: 0.8-5.5 V
- Output current: 6 A-60 A
- High efficiency up to 96%
- Auto-Track ${ }^{\text {™ }}$ Sequencing
- Margin up/down controls
- Pre-bias start up capability
- Remote on/off
- Remote sense
- POLA compatible
- True multi-sourcing flexibility (form, fit and function)
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Protection: overcurrent / short-circuit
- International safety standard approvals - UL, CSA, TÜV \& CB Report

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
6 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	94\%	0.87 " $\times 0.495$ " x $0.335^{\prime \prime}(22.01 \times 12.57 \times 8.51)$	PTH03050WAH
6 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	95\%	0.87 " $\times 0.495$ " $\times 0.335^{\prime \prime}(22.01 \times 12.57 \times 8.51)$	PTH05050WAH
6 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	88\%	0.87 " $\times 0.495$ " $\times 0.335^{\prime \prime}(22.01 \times 12.57 \times 8.51)$	PTH12050LAH
6 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	93\%	0.87 " $\times 0.495^{\prime \prime} \times 0.335^{\prime \prime}(22.01 \times 12.57 \times 8.51)$	PTH12050WAH
8 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	93\%	0.9 " $\times 0.33 " \times 0.4$ " ($22.86 \times 8.38 \times 10.16$)	PTV03010WAH
8 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	95\%	0.9 " $\times 0.33^{\prime \prime} \times 0.4$ " ($\left.22.86 \times 8.38 \times 10.16\right)$	PTV05010WAH
8 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	87\%	0.9 " $\times 0.33$ " $\times 0.4$ " ($22.86 \times 8.38 \times 10.16$)	PTV12010LAH
8 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	92\%	0.9 " $\times 0.33^{\prime \prime} \times 0.4$ " ($22.86 \times 8.38 \times 10.16$)	PTV12010WAH
10 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	93\%	$0.995^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354^{\prime \prime}(25.27 \times 15.75 \times 8.99)$	PTH03060WAH
10 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	94\%	$0.995^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354 "$ ($\left.25.27 \times 15.75 \times 8.99\right)$	PTH05060WAH
10 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	88\%	$0.995^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354 "$ ($25.27 \times 15.75 \times 8.99$)	PTH12060LAH
10 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	94\%	$0.995^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354^{\prime \prime}(25.27 \times 15.75 \times 8.99)$	PTH12060WAH
12 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	89\%	$1.370^{\prime \prime} \times 0.62 " \times 0.354^{\prime \prime}\left(34.80^{\prime \prime} \times 15.75 \times 8.99\right)$	PTH12010LAH
12 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	94\%	$1.370^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354^{\prime \prime}\left(34.80^{\prime \prime} \times 15.75 \times 8.99\right)$	PTH12010WAH
15 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	93\%	$1.370^{\prime \prime} \times 0.62 " \times 0.354^{\prime \prime}(34.80 " \times 15.75 \times 8.99)$	PTH03010WAH
15 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	95\%	$1.370^{\prime \prime} \times 0.62^{\prime \prime} \times 0.354^{\prime \prime}\left(34.80^{\prime \prime} \times 15.75 \times 8.99\right)$	PTH05010WAH
16 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	87\%	1.750 " $\times 0.37{ }^{\prime \prime} \times 0.500$ " (44.45 x 9.4×12.7)	PTV12020LAH
16 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	93\%	$1.750^{\prime \prime} \times 0.37{ }^{\prime \prime} \times 0.500$ " (44.45 x $\left.9.4 \times 12.7\right)$	PTV12020WAH
18 A	2.95 to 3.6 Vdc	0.8 to 2.5 V	95\%	1.750 " $00.37{ }^{\prime \prime} \times 0.500$ " (44.45 x $\left.9.4 \times 12.7\right)$	PTV03020WAH
18 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	94\%	1.750 " $\times 0.37{ }^{\prime \prime} \times 0.500$ " (44.45 x $\left.9.4 \times 12.7\right)$	PTV05020WAH
18 A	10.8 to 13.2 Vdc	0.8 to 1.8 V	89\%	$1.495^{\prime \prime} \times 0.87{ }^{\prime \prime} \times 0.354^{\prime \prime}(37.97 \times 22.01 \times 8.99)$	PTH12020LAH
18 A	10.8 to 13.2 Vdc	1.2 to 5.5 V	95\%	$1.495^{\prime \prime} \times 0.87{ }^{\prime \prime} \times 0.354^{\prime \prime}(37.97 \times 22.01 \times 8.99)$	PTH12020WAH
22 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	95\%	$1.495 " \times 0.87{ }^{\prime \prime} \times 0.354^{\prime \prime}(37.97 \times 22.01 \times 8.99)$	PTH03020WAH
22 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	96\%	$1.495 "$ x 0.87" $\times 0.354^{\prime \prime}$ ($37.97 \times 22.01 \times 8.99$)	PTH05020WAH
26 A	10.2 to 13.8 Vdc	0.8 to 1.8 V	89\%	1.37 " $\times 1.12$ " x 0.354 " ($34.80 \times 28.45 \times 8.99$)	PTH12030LAH
26 A	10.2 to 13.8 Vdc	1.2 to 5.5 V	95\%	1.37 " $\times 1.12$ " $\times 0.354^{\prime \prime}$ ($34.80 \times 28.45 \times 8.99$)	PTH12030WAH
30 A	2.95 to 3.65 Vdc	0.8 to 2.5 V	93\%	1.37 " $\times 1.12^{\prime \prime} \times 0.354$ " ($34.80 \times 28.45 \times 8.99$)	PTH03030WAH
30 A	4.5 to 5.5 Vdc	0.8 to 3.6 V	94\%	1.37 " $\times 1.12^{\prime \prime} \times 0.354^{\prime \prime}(34.80 \times 28.45 \times 8.99)$	PTH05030WAH
50 A	8.0 to 14 Vdc	0.8 to 5.5 V	96\%	$2.045^{\prime \prime} \times 1.045^{\prime \prime} \times 0.357$ " ($51.94 \times 26.54 \times 9.07$)	PTH12040WAH
60 A	2.95 to 5.5 Vdc	0.8 to 3.6 V	96\%	$2.045^{\prime \prime} \times 1.045^{\prime \prime} \times 0.357$ " ($51.94 \times 26.54 \times 9.07$)	PTH04040WAH

DDR Memory Power Module

Special Features

- High current dual-output power module for DDR memory
- Input voltage range: $10.8-13.2 \mathrm{~V}$
- Output voltage adjustability: 2.32-2.75 Vddq
- Single Compact Module provides $25 \mathrm{~A} @ 2.5 \mathrm{~V}$ for Vddq supply and 8 A @ 1.25 V for Vtt termination
- Vtt output has sink capability for logic terminations
- Remote sense (Vddq output only)
- Tracking dual output voltages

Designers' tip:

Check out the POLA memory bus termination models on page 48.

Memory Power Non-isolated DC-DC Converters

Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
25 A \& 8 A	10.8 to 13.2 Vdc	2.5 V \& 1.25 V	84\%	$30-\mathrm{l} \times 0.5$ " $\times 1.2^{\prime \prime}(76.20 \times 12.7 \times 30.48)$	DDR12-25D08-AJ

Voltage Regulator Modules (VRM)

VRM64

Emerson Network Power closely tracks leading semiconductor manufacturers' (Intel and AMD) roadmaps and offer processor power converters designed specifically to match demands.

Special Features

- Voltage regulator modules (VRMs) for both Intel and AMD64 microprocessors
- Input voltage ranges: 10.8-13.2 V , 11-12.6 V and 11-13.2 V
- Output currents up to 105 A
- Output voltage adjustability
- 5 Bit and 6 Bit VID inputs
- Allows dynamic VID code changes
- High efficiency up to 87%
- Exceptionally fast transient response in excess of $900 \mathrm{~A} / \mu \mathrm{s}$
- Remote on/off
- Differential remote sense
- Low profile to meet 1 U applications
- Current sharing - no need for master/slave configurations
- Protection: over current / short circuit/over voltage (with on board fuse)
- International safety standard approvals - VDE

VRM Processor Power Non-isolated DC-DC Converters

VRM Specifications	Output Current	Input Voltage	Output Voltage	Efficiency	Package LxWxH (mm)	Model Number
AMD64	80 A	10.8 to 13.2 Vdc	0.8 to 1.55 V	84\%	3.68 " $\times 0.75 \times 1.25$ " (93.47 x 19.05×31.75)	VRM64-80-12-UY
VRM10.0, VRM10.1	105 A	11 to 12.6 Vdc	0.8375 to 1.6000 V	84\%	3.68 " $\times 1.00$ " $\times 1.25$ " (93.35 x 25.4×31.75)	VRM10-105-12-EY
VRM10.0, VRM10.1	80 A	11 to 12.6 Vdc	0.8375 to 1.6000 V	85\%	3.19 " $\times 0.77^{\prime \prime} \times 1.24$ " (81.03 $\times 19.78 \times 31.75$)	VRM10-80-12-PY
VRM10.0, VRM10.1	85 A	11 to 12.6 Vdc	0.8375 to 1.6000 V	85\%	$3.19^{\prime \prime} \times 0.77^{\prime \prime} \times 1.24$ " (81.03 $\left.\times 19.78 \times 31.75\right)$	VRM10-85-12-UY
VRM9.0, VRM9.1	81 A	11 to 12.6 Vdc	1.1 to 1.85 V	87\%	3.80 " $\times 0.82^{\prime \prime} \times 0.83$ " (96.52 $\left.\times 20.83 \times 21.08\right)$	NXI100-12P1 V8CY
VRM9. 1	81 A	11 to 12.6 Vdc	1.1 to 1.85 V	85\%	3.80 " $\times 0.57^{\prime \prime} \times 2.30$ ($\left.96.52 \times 14.48 \times 58.42\right)$	NXI150-12P1 V8CY
VRM9.0	60 A	11 to 13.2 Vdc	1.1 to 1.85 V	84\%	3.80 " $\times 0.57$ " $\times 2.30$ " (96.52 $\times 14.48 \times 58.42$)	NXI110-12P1 V8CY

PFC Products

Special Features

- 1600 W / 720 W • Clock synch (in/out)
- Unity power factor
- Universal input and frequency range
- Positive and negative enable
- Paralleling with current share
- IEC 1000-3.2 compliance
- $100^{\circ} \mathrm{C}$ baseplate
- Current monitoring
- Vout adjust
- On/off enable
- Remote sense
- 95\% efficiency
- Fast transient response

lout	lout	Input Voltage	Package $\mathbf{L} \times \mathbf{W} \mathbf{x H}(\mathbf{m m})$	Efficiency	Model Number
PFC Module - Baseplate					
380 V	4.2 A	$85-264 \mathrm{Vac}$	$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	95%	AIF04ZPFC-01L
380 V	4.2 A	$85-264 \mathrm{Vac}$	$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	95%	AIF04ZPFC-02L
393 V	2.08 A	$85-264 \mathrm{Vac}$	$3.5^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(88.9 \times 60.96 \times 12.7)$	93%	AIT02ZPFC-01NL

High Power 300 Vin

300 V input 250-600 W output

Special Features

- 300 V input (250 V to 420 V PFC-ready)
- 2nd generation product
- Standard thru-hole full and half-bricks
- 250 W (50 A); 600 W (120 A)
- Power density > 100 W/in³
- Baseplate construction $-100^{\circ} \mathrm{C}$ max
- Embedded controls on secondary side: - Temp monitor
- Current sharing
- Power good signal
- Current limit \& OVP adjust

	lout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
AIF 300 Vin Full Brick - Baseplate						
	1.80 V	120 A	300 V (250-420 V)	4.6 " $\times 2.4{ }^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	80\%	AIF120Y300-L
	3.3 V	120 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	4.6 " $\times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	87\%	AIF120F300-L
	5 V	80 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4$ " $\times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	90\%	AIF80 A300-L
	12 V	50 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	90\%	AIF50B300-L
	15 V	40 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}(116.84 \times 60.96 \times 12.7)$	90\%	AIF40C300-L
	24 V	25 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	4.6 " $\times 2.4$ " $\times 0.5$ " ($116.84 \times 60.96 \times 12.7)$	90\%	AIF25H300-L
	48 V	12 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	4.6 " $\times 2.4$ " $\times 0.5$ " (116.84 $\times 60.96 \times 12.7$)	91\%	AIF12W300-L
AlH 300 Vin Half Brick - Baseplate						
	1.8 V	50 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	2.3 " $\times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	80\%	AlH50Y300-L
	3.3 V	50 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	85\%	AIH50F300-L
	5 V	40 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	88\%	AlH40 A300-L
	12 V	20 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	90\%	AlH20B300-L
	15 V	16 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	90\%	AIH16C300-L
	24 V	10 A	$300 \mathrm{~V}(250-420 \mathrm{~V})$	$2.3^{\prime \prime} \times 2.4$ " $\times 0.5$ " ($58.42 \times 60.96 \times 12.7$)	90\%	AIH10H300-L

On-board AC to DC Distributed Architecture

- High power and high density $A C$ to $D C$ building blocks for quick-turn and modular power solutions
- Alternative power solutions vs. custom development approach
- No fans and high reliability (1M hours MTBF)
- Suitable for harsh temperature conditions ($-20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ operating temperature)

AC in

ASA \& AEE Low Power

AEE03 A36-L

ASA01 A36-L

Special Features

- Input voltages 9-36 V, 18-36 V, 18-75 V and 36-75 V
- Single and dual outputs
- Power 6-15 W
- Regulated outputs
- Operating temperature -40° to $71^{\circ} \mathrm{C}$ (ambient)
- Overcurrent protection
- 1500 Vdc isolation
- CE Mark Safety (not UL certified)

	Input Voltage	Output Voltage	Package L \times W \times H (mm)	I/O Isolation	Efficiency	Model Number
6 W	Enclosed					
	$9-36 \mathrm{~V}$	12 V @ 0.5 A	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	82\%	ASA00B18-L
	$9-36 \mathrm{~V}$	15V@0.4 A	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	83\%	ASA00C18-L
	$9-36 \mathrm{~V}$	5V@1A	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	81\%	ASA01 A18-L
	$9-36 \mathrm{~V}$	3.3V@1.2 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	78\%	ASA01F18-L
	$9-36 \mathrm{~V}$	$5 \mathrm{~V} @ \pm 0.5 \mathrm{~A}$	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	81\%	ASA00 AA18-L
	$9-36 \mathrm{~V}$	$12 \mathrm{~V} @ \pm 0.25 \mathrm{~A}$	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	82\%	ASA00BB18-L
	$9-36 \mathrm{~V}$	$15 \mathrm{~V} @ \pm 0.2 \mathrm{~A}$	DIP 1.25 " $\times 0.8^{\prime \prime} \times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	83\%	ASA00CC18-L
	$18-75 \mathrm{~V}$	12 V @ 0.5 A	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	82\%	ASA00B36-L
	$18-75 \mathrm{~V}$	15V@0.4 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4 "$ ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	83\%	ASA00C36-L
	$18-75 \mathrm{~V}$	5V@1A	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	81\%	ASA01 A36-L
	$18-75 \mathrm{~V}$	$3.3 \mathrm{~V} @ 1.2 \mathrm{~A}$	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	78\%	ASA01F36-L
	$18-75 \mathrm{~V}$	$5 \mathrm{~V} @ \pm 0.5 \mathrm{~A}$	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16)$	1500 Vdc	81\%	ASA00 AA36-L
	$18-75 \mathrm{~V}$	$12 \mathrm{~V} @ \pm 0.25 \mathrm{~A}$	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16)$	1500 Vdc	82\%	ASA00BB36-L
	18-75 V	$15 \mathrm{~V} @ \pm 0.2 \mathrm{~A}$	DIP 1.25 " $\times 0.8$ " $\times 0.4$ " ($31.75 \times 20.32 \times 10.16$)	1500 Vdc	83\%	ASA00CC36-L
10 W	Enclosed					
	$18-36 \mathrm{~V}$	12 V @ 0.835 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	83\%	ASA00B24-L
	$18-36 \mathrm{~V}$	5 V @ 2 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	82\%	ASA02 A24-L
	$18-36 \mathrm{~V}$	3.3 V @ 3 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	79\%	ASA03F24-L
	$18-36 \mathrm{~V}$	2.5 V @ 3 A	DIP $1.25^{\prime \prime} \times 0.8{ }^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	77\%	ASA03G24-L
	$36-75 \mathrm{~V}$	12 V @ 0.835 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	83\%	ASA00B48-L
	$36-75 \mathrm{~V}$	5 V @ 2 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	82\%	ASA02 A48-L
	$36-75 \mathrm{~V}$	3.3 V @ 3 A	DIP $1.25^{\prime \prime} \times 0.8^{\prime \prime} \times 0.4^{\prime \prime}(31.75 \times 20.32 \times 10.16)$	1500 Vdc	79\%	ASA03F48-L
	$36-75 \mathrm{~V}$	2.5 V @ 3 A	DIP 1.25 " $\times 0.8{ }^{\prime \prime} \times 0.4$ " $(31.75 \times 20.32 \times 10.16)$	1500 Vdc	87\%	ASA03G48-L
15 W	Enclosed					
	$9-36 \mathrm{~V}$	12 V @ 1.25 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE01B18-L
	$9-36 \mathrm{~V}$	15 V @ 1 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE01C18-L
	$9-36 \mathrm{~V}$	3.3 V @ 4 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	80\%	AEE04F18-L
	$9-36 \mathrm{~V}$	5 V @ 3 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE03 A18-L
	$9-36 \mathrm{~V}$	12 V @ $\pm 0.625 \mathrm{~A}$	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	83\%	AEE00BB18-L
	$9-36 \mathrm{~V}$	$15 \mathrm{~V} @ \pm 0.5 \mathrm{~A}$	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	83\%	AEE00CC18-L
	$9-36 \mathrm{~V}$	$5 \mathrm{~V} @ \pm 1.5 \mathrm{~A}$	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	79\%	AEE01 AA18-L
	$18-75 \mathrm{~V}$	12 V @ 1.25 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE01B36-L
	$18-75 \mathrm{~V}$	15 V @ 1 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE01C36-L
	18-75 V	3.3 V @ 4 A	1 " $\times 2$ " $\times 0.44$ " ($25.4 \times 50.8 \times 11.30)$	1500 Vdc	80\%	AEE04F36-L
	18-75 V	5 V @ 3 A	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	84\%	AEE03 A36-L
	$18-75 \mathrm{~V}$	12 V @ $\pm 0.625 \mathrm{~A}$	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	83\%	AEE00BB36-L
	18-75 V	$15 \mathrm{~V} @ \pm 0.5 \mathrm{~A}$	$1^{\prime \prime} \times 2$ " $\times 0.44$ " $(25.4 \times 50.8 \times 11.30)$	1500 Vdc	83\%	AEE00CC36-L
	18-75 V	5 V @ $\pm 1.5 \mathrm{~A}$	1 " $\times 2$ " $\times 0.44$ " ($25.4 \times 50.8 \times 11.30)$	1500 Vdc	79\%	AEE01 AA36-L

BXA Low Power

BXA30

Special Features

- Input voltages 9-18 V, 18-75 V, $36-75 \mathrm{~V}$
- Single and dual outputs
- Power 3-40 W
- Regulated outputs
- Operating temperature $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (ambient with derating)
- Protection: overcurrent/ short-circuit
- 500 to 1500 Vdc isolation
- Enclosed and baseplate models
- UL, CSA and VDE safety approvals

	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
3 W	Enclosed					
	$18-36 \mathrm{~V}$	5V@0.5 A	1.25 " $\times 0.8$ " $\times 0.5$ " ($31.75 \times 20.32 \times 12.70$)	500 V	76\%	BXA3-24S05J
	$36-75 \mathrm{~V}$	5V@0.5 A	1.25 " $\times 0.8$ " $\times 0.5$ " ($31.75 \times 20.32 \times 12.70$)	500 V	76\%	BXA3-48S05J
	$36-75 \mathrm{~V}$	5 V @ 0.2 A	1.25 " $\times 0.8{ }^{\prime \prime} \times 0.5{ }^{\prime \prime}(31.75 \times 20.32 \times 12.70)$	500 V	76\%	BXA3-48S15J
25 W	Baseplate					
	$36-75 \mathrm{~V}$	5V@5A	3.02 " $\times 2.41$ " $\times 0.52$ " ($76.71 \times 61.21 \times 13.21$)	1500 V	80\%	BXA30-48S05-FJ
	$36-75 \mathrm{~V}$	5 V @ 5 A	3.02 " $\times 2.41$ " $\times 0.52^{\prime \prime}(76.71 \times 61.21 \times 13.21)$	1500 V	80\%	BXA30-48S05J
30 W	Baseplate					
	$36-75 \mathrm{~V}$	15 V @ 2 A	$3.02^{\prime \prime} \times 2.41^{\prime \prime} \times 0.52$ " $(76.71 \times 61.21 \times 13.21)$	1500 V	87\%	BXA30-48S15J
	$36-75 \mathrm{~V}$	$5 \mathrm{~V} @ \pm 2.5 \mathrm{~A}$	$3.02^{\prime \prime} \times 2.41$ " $0.52^{\prime \prime}(76.71 \times 61.21 \times 13.21)$	1500 V	80\%	BXA30-48D05-FJ
	$36-75 \mathrm{~V}$	$12 \mathrm{~V} @ \pm 1.25 \mathrm{~A}$	$3.02^{\prime \prime} \times 2.41^{\prime \prime} \times 0.52^{\prime \prime}(76.71 \times 61.21 \times 13.21)$	1500 V	84\%	BXA30-48D12J
	$36-75 \mathrm{~V}$	$15 \mathrm{~V} @ \pm 1.0 \mathrm{~A}$	$3.02^{\prime \prime} \times 2.41^{\prime \prime} \times 0.52^{\prime \prime}(76.71 \times 61.21 \times 13.21)$	1500 V	86\%	BXA30-48D15J
40 W	Baseplate					
	$18-36 \mathrm{~V}$	3.3 V @ 7 A	2.20 " $\times 2.2$ " $\times 0.5^{\text {" }}(55.88 \times 55.88 \times 12.70)$	1500 V	75\%	BXA40-2453 V3-MJ
	$36-75 \mathrm{~V}$	12V@3.3A	2.20 " $\times 2.2$ " $\times 0.5$ " ($55.88 \times 55.88 \times 12.70$)	1500 V	87\%	BXA40-48S12-MJ

SXE \& SXN Low Power

Special Features

- Input voltages 33-75 Vdc
- Single and dual outputs
- Power 10.8-15 W
- Regulated outputs
- High efficiency topology - 87% @ 5 Vdc
- Remote on/off
- $\pm 10 \%$ output voltage trim
- Operating temperature $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (ambient)
- Protection: overcurrent/shortcircuit/overvoltage
- 1500 Vdc isolation
- UL, CSA \& VDE safety approvals
- Surface-mount

	Input Voltage	Output Voltage	Package L \times W \times H (mm)	I/O Isolation	Efficiency	Model Number
15 W Open-frame Surface-mounting						
	$33-75 \mathrm{~V}$	5V@3A	1.9 " $\times 1.39^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 35.31 \times 8.64\right)$	1500 V	87\%	SXE15-48S05-RJ
	$33-75 \mathrm{~V}$	12 V @ 1.25 A	1.9 " $\times 1.39^{\prime \prime} \times 0.34 "$ ($\left.48.26 \times 35.31 \times 8.64\right)$	1500 V	85\%	SXE15-48S12-RJ
	$33-75 \mathrm{~V}$	1.8 V @ 6 A	1.9 " $\times 1.39$ " $\times 0.34$ " ($48.26 \times 35.31 \times 8.64)$	1500 V	83\%	SXE15-48S1 V8-RJ
	$33-75 \mathrm{~V}$	2.5V@6A	1.9 " $\times 1.39$ " x 0.34 " ($48.26 \times 35.31 \times 8.64)$	1500 V	85\%	SXE15-48S2 V5-RJ
	$33-75 \mathrm{~V}$	3.3 V @ 4.5 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	86\%	SXE15-48S3 V3-RJ
	$33-75 \mathrm{~V}$	5V@3A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	83\%	SXN15-48S05-RJ
	$33-75 \mathrm{~V}$	1.8 V @ 6 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	85\%	SXN15-48S1 V8-RJ
	$33-75 \mathrm{~V}$	2.5V@6A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	85\%	SXN15-48S2 V5-RJ
	$33-75 \mathrm{~V}$	3.3 V @ 4.5 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	86\%	SXN15-48S3 V3-RJ
	$33-75 \mathrm{~V}$	5V@3A\&3.3V@4.5 A	1.9 " $\times 1.39^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 35.31 \times 8.64\right)$	1500 V	86\%	SXE15-48D05-3 V3-RJ
	$33-75 \mathrm{~V}$	3.3 V @ 3.5 A \& 2.5V@ 4.5 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34^{\prime \prime}(48.26 \times 25.65 \times 8.64)$	1500 V	85\%	SXN15-48D3 V3-2 V5RJ
	$33-75 \mathrm{~V}$	5V@3A\&3.3V@4.5 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	86\%	SXN15-48D05-3 V3-RJ
	$33-75 \mathrm{~V}$	3.3 V @ 3.5 A \& 2.5 V @ 4.5 A	1.9 " $\times 1.01^{\prime \prime} \times 0.34$ " ($\left.48.26 \times 25.65 \times 8.64\right)$	1500 V	85\%	SXN15-48D3 V3-2 V5RJ

CXA Low Power

Special Features

- $4: 1$ input voltage range, $18-75 \mathrm{~V}$
- Single and dual outputs
- Power 10-20 W
- Regulated outputs
- Remote on/off
- $\pm 10 \%$ output voltage trim (CXA20)
- Operating temperature $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (ambient)
- Protection: overcurrent/short-circuit/overvoltage
- Basic insulation, 1500 Vdc
- Enclosed and baseplate models
- UL, CSA \& Vdc safety approvals

	Input Voltage	Output Voltage	Package Lx W x H (mm)	I/O Isolation	Efficiency	Model Number
20 W	Open-frame					
	18-75 V	5 V @ 4 A	$2 " \times 1.6^{\prime \prime} \times 0.41$ ($\left.50.80 \times 40.64 \times 10.41\right)$	1500 V	83\%	CXA20-48505J
	18-75V	12V@1.66A	$2 \mathrm{x} \times 1.6$ " $\times 0.41$ " ($50.80 \times 40.64 \times 10.41$)	1500 V	83\%	CXA20-48S12J
	18-75V	3.3 A@6A	$2 " \times 1.6{ }^{\prime \prime} \times 0.41$ " ($\left.50.80 \times 40.64 \times 10.41\right)$	1500 V	80\%	CXA20-4853 V3J
	18-75V	$5 \mathrm{~V} @ \pm 2.0 \mathrm{~A}$	$2 \mathrm{x} \times 1.6$ " $\times 0.41$ " ($50.80 \times 40.64 \times 10.41$)	1500 V	84\%	CXA20-48D05J
	18-75V	$12 \mathrm{~V} @ \pm 0.83 \mathrm{~A}$	$2 " \times 1.6{ }^{\prime \prime} \times 0.41$ " ($\left.50.80 \times 40.64 \times 10.41\right)$	1500 V	84\%	CXA20-48D12J
	18-75V	$12 \mathrm{~V} @ \pm 0.83 \mathrm{~A}$	2 " $\times 1.6$ " $\times 0.41$ " ($50.80 \times 40.64 \times 10.41$)	1500 V	84\%	CXA20-48D12-SJ

Ultra Low Profile

Special Features

- Ultra low profile - 4.3 mm - for low profile applications
- Input voltage: $36-75 \mathrm{~V}$ and $36-60 \mathrm{~V}$
- Power: $10 \mathrm{~W}-30 \mathrm{~W}$
- Output voltage: 1.5, 1.8, 2.5, 3.3 and 5 volts
- Output current: 2 A-10 A
- High efficiency: 89% at 5 volts output
- Regulation to zero load
- Operating temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (ambient)
- Protection: OVP, OCP, LVP
- Remote on/off
- Current sharing for parallel application
- Meets CISPR22, Class A on conducted and radiated EMI
- 1500 Vdc isolation
- Platform reflow compatibility and available in RoHS 6/6 only

	Input Voltage	Output	Package Lx W x H (mm)	I/O Isolation	Efficiency	Model Number
10 W	Isolated Open-frame					
	48 V ($36-60 \mathrm{~V}$)	1.5V@3A	1.39 " $\times 0.92$ " $\times 0.3$ " ($35.31 \times 23.37 \times 7.62)$	1500 Vdc	78\%	AUM03M48-L
	48 V ($36-60 \mathrm{~V}$)	1.8 V @ 3 A	1.39 " $\times 0.92$ " $\times 0.3$ " ($35.31 \times 23.37 \times 7.62)$	1500 Vdc	80\%	AUM03Y48-L
	48 V ($36-60 \mathrm{~V}$)	2.5 V @ 3 A	1.39 " $\times 0.92$ " $\times 0.3$ " ($35.31 \times 23.37 \times 7.62)$	1500 Vdc	84\%	AUM03G48-L
	48 V ($36-60 \mathrm{~V})$	3.3 V @ 3 A	1.39 " $\times 0.92$ " $\times 0.3^{\prime \prime}(35.31 \times 23.37 \times 7.62)$	1500 Vdc	86\%	AUM03F48-L
	48 V ($36-60 \mathrm{~V}$)	5.0 V @ 2 A	1.39 " $\times 0.92$ " $\times 0.3$ " ($35.31 \times 23.37 \times 7.62$)	1500 Vdc	88\%	AUM02 A48-L
	48 V ($36-60 \mathrm{~V})$	1.8V@3A	1.47 " $\times 1.07$ " $\times 0.17$ " ($37.34 \times 27.18 \times 4.32)$	1500 Vdc	84\%	AUD03Y48-L
	48 V ($36-60 \mathrm{~V}$)	2.5 V @ 3 A	1.47 " $\times 1.07$ " $\times 0.17$ " ($37.34 \times 27.18 \times 4.32)$	1500 Vdc	86\%	AUD03G48-L
	48 V ($36-60 \mathrm{~V}$)	$3.3 \mathrm{~V} @ 3 \mathrm{~A}$	1.47 " $\times 1.07$ " $\times 0.17$ " $(37.34 \times 27.18 \times 4.32)$	1500 Vdc	88\%	AUD03F48-L
	48 V ($36-60 \mathrm{~V}$)	5.0 V @ 3 A	1.47 " $\times 1.07$ " $\times 0.17$ " ($37.34 \times 27.18 \times 4.32$)	1500 Vdc	89\%	AUD02 A48-L
15 W	Isolated Open-frame					
	48 V ($36-75 \mathrm{~V}$)	1.8 V @ 4.5 A	1.47 " $\times 1.23$ " $\times 0.17^{\prime \prime}(37.34 \times 31.24 \times 4.32)$	1500 Vdc	84\%	AUG04Y48-L
	48 V ($36-75 \mathrm{~V})$	2.5 V @ 4.5 A	1.47 " $\times 1.23^{\prime \prime} \times 0.17^{\prime \prime}(37.34 \times 31.24 \times 4.32)$	1500 Vdc	86\%	AUG04G48-L
	48 V ($36-75 \mathrm{~V}$)	3.3 V @ 4.5 A	1.47 " $\times 1.23$ " $\times 0.17^{\prime \prime}(37.34 \times 31.24 \times 4.32)$	1500 Vdc	88\%	AUG04F48-L
	48 V ($36-75 \mathrm{~V}$)	$5.0 \mathrm{~V} @ 3 \mathrm{~A}$	1.47 " $\times 1.23^{\prime \prime} \times 0.17^{\prime \prime}(37.34 \times 31.24 \times 4.32)$	1500 Vdc	89\%	AUG03 A48-L
20 W	Isolated Open-frame					
	48 V ($36-75 \mathrm{~V}$)	1.8 V @ 8 A	1.47 " $\times 1.23$ " $\times 0.19$ " ($37.34 \times 31.24 \times 4.83)$	1500 Vdc	84\%	AUG08Y48-L
	48 V ($36-75 \mathrm{~V})$	5.5 V @ 5 A	1.47 " $\times 1.23^{\prime \prime} \times 0.19^{\prime \prime}(37.34 \times 31.24 \times 4.83)$	1500 Vdc	86\%	AUG07G48-L
	$48 \mathrm{~V}(36-75 \mathrm{~V})$	3.3V@6A	1.47 " $\times 1.23$ " $\times 0.19^{\prime \prime}(37.34 \times 31.24 \times 4.83)$	1500 Vdc	88\%	AUG06F48-L
	48 V ($36-75 \mathrm{~V}$)	5.0V@3A	1.47 " $\times 1.23$ " $\times 0.19$ " $(37.34 \times 31.24 \times 4.83)$	1500 Vdc	88\%	AUG04 A48-L
30 W	Isolated Open-frame					
	48 V ($36-75 \mathrm{~V}$)	1.8 V @ 11 A	1.77 " $\times 1.77$ " $\times 0.17$ " ($44.96 \times 44.96 \times 4.32)$	1500 Vdc	86\%	AUK11Y48-L
	48 V ($36-75 \mathrm{~V}$)	2.5V@10 A	1.77 " $\times 1.77$ " $\times 0.17$ " ($44.96 \times 44.96 \times 4.32)$	1500 Vdc	89\%	AUK10G48-L
	$48 \mathrm{~V}(36-75 \mathrm{~V})$	3.3 V @ 9 A	1.77 " $\times 1.77$ " $\times 0.17$ " ($44.96 \times 44.96 \times 4.32)$	1500 Vdc	90\%	AUK09F48-L
	48 V ($36-75 \mathrm{~V}$)	5.0 V @ 6 A	1.77 " $\times 1.77$ " $\times 0.17$ " ($44.96 \times 44.96 \times 4.32)$	1500 Vdc	91\%	AUK06 A48-L

	Input Voltage	Output	Package L \times W $\times \mathrm{H}$ (mm)	I/O Isolation	Efficiency	Model Number
20 W	Non-Isolated Open-frame					
	$3.3 \mathrm{~V}(2.97 \mathrm{~V}-3.63)$	1.5 V @ 6 A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	89\%	AVC06M04-L
	$3.3 \mathrm{~V}(2.97 \mathrm{~V}-3.63)$	1.8 V @ 6 A	$1.33 " \times 0.61 " \times 0.24$ " ($33.78 \times 15.49 \times 6.10$)	Non-isolated	90\%	AVC06Y04-L
	$3.3 \mathrm{~V}(2.97 \mathrm{~V}-3.63)$	2.0V@6A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	92\%	AVC06D04-L
	$3.3 \mathrm{~V}(2.97 \mathrm{~V}-3.63)$	2.5 V @ 6 A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	93\%	AVC06G04-L
	5 V (4.5-5.5 V)	1.2 V @ 6 A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	84\%	AVC06K04-L
	5 V (4.5-5.5 V)	1.5V@6A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	86\%	AVC06M05-L
	5 V ($4.5-5.5 \mathrm{~V}$)	1.8V@6A	1.33 " $\times 0.61$ " $\times 0.24$ " $(33.78 \times 15.49 \times 6.10)$	Non-isolated	88\%	AVC06Y05-L
	$5 \mathrm{~V}(4.5-5.5 \mathrm{~V})$	2.0V@6A	$1.33 " \times 0.61$ " $\times 0.24$ " (33.78 $\times 15.49 \times 6.10$)	Non-isolated	89\%	AVC06D05-L
	5 V ($4.5-5.5 \mathrm{~V}$)	2.5 V @ 6 A	1.33 " $\times 0.61$ " $\times 0.24$ " ($33.78 \times 15.49 \times 6.10$)	Non-isolated	91\%	AVC06G05-L
	5 V (4.5-5.5 V)	3.3 V @ 6 A	1.33 " $\times 0.61$ " $\times 0.24$ " ($33.78 \times 15.49 \times 6.10$)	Non-isolated	93\%	AVC06F05-L

The Emerson Network Power company that accepts Buyer's order for Goods is herein referred to as the "Seller" and the person or entity purchasing goods or services ("Goods") and/or licensing software and/or firmware which are preloaded, or to be loaded into Goods ("Software") from Seller is referred to as the "Buyer." These Terms and Conditions, any price list or schedule, quotation, acknowledgment or invoice from Seller relevant to the sale of the Goods and licensing of Software and all documents incorporated by specific reference herein or therein constitute the complete and exclusive statement of the terms of the agreement governing the sale of Goods and license of Software by Seller to Buyer. Seller's acceptance of Buyer's purchase order is expressly conditional on Buyer's assent to all of Seller's terms and conditions of sale, including terms and conditions that are different from or additional to the terms and conditions of Buyer's purchase order. Buyer's acceptance of the Goods and/or Software will manifest Buyer's assent to these Terms and Conditions. Seller reserves the right in its sole discretion to refuse orders. Notwithstanding anything to the contrary, in the event that the provisions of these Terms and Conditions conflict with the provisions of an effective agreement signed by a duly authorized representative of both parties ("Effective Agreement") that applies to the transaction(s) contemplated herein, the Effective Agreement shall control.

1. PRICES: Unless otherwise specified in writing by Seller, the price quoted or specified by Seller for the Goods and/or Software shall remain in effect for thirty (30) days after the date of Seller's quotation or acknowledgment of Buyer's order for the Goods and/or Software, whichever occurs first, provided an unconditional authorization from Buyer for the shipment of the Goods and/or Software is received and accepted by Seller within such time period. If such authorization is not received by Seller within such thirty (30) day period, Seller shall have the right to change the price for the Goods and/or Software to Seller's price for the Goods and/or Software at the time of shipment. All prices and licensee fees are exclusive of taxes, transportation and insurance, which are to be borne by Buyer.
2. TAXES: Any current or future tax or governmental charge (or increase in same) affecting Seller's costs of production, sale, or shipment, or which Seller is otherwise required to pay or collect in connection with the sale, purchase, delivery, storage, processing, use or consumption of Goods, shall be for Buyer's account and shall be added to the price or billed to Buyer separately, at Seller's election.
3. TERMS OF PAYMENT: Unless otherwise specified by Seller, terms are net thirty (30) days from date of Seller's invoice in U.S. currency. Seller shall have the right, among other remedies, either to terminate this agreement or to suspend further performance under this and/or other agreements with Buyer in the event Buyer fails to make any payment when due, which other agreements Buyer and Seller hereby amend accordingly. Buyer shall be liable for all expenses, including attorneys' fees, relating to the collection of past due amounts. If any payment owed to Seller is not paid when due, it shall bear interest, at a rate to be determined by Seller, which shall not exceed the maximum rate permitted by law, from the date on which it is due until it is paid. Any payment due to either party under this agreement shall be made in full without any set-off, restriction, condition deduction or withholding for or on account of any counterclaim. Should Buyer's financial responsibility become unsatisfactory to Seller, cash payments or security satisfactory to Seller may be required by Seller for future deliveries of the Goods and/or Software. If such cash payment or security is not provided, in addition to Seller's other rights and remedies, Seller may discontinue deliveries.
4. SHIPMENT AND DELIVERY: While Seller will use all reasonable commercial efforts to maintain the delivery date(s) acknowledged or quoted by Seller, all shipping dates are approximate and not guaranteed. Seller reserves the right to make partial shipments. Seller, at its option, shall not be bound to tender delivery of any Goods and/or Software for which Buyer has not provided shipping instructions and other required information. If the shipment of the Goods and/or Software is postponed or delayed by Buyer for any reason, Buyer agrees to reimburse Seller for any and all storage costs and other additional expenses resulting therefrom. Risk of loss and legal title to the Goods shall transfer from Seller to Buyer upon delivery to and receipt by carrier at Seller's shipping point. Unless otherwise specified by Seller, all shipments are F.C.A. Seller's shipping point (Incoterms 2000). Any claims for shortages or damages suffered in transit are the responsibility of Buyer and shall be submitted by Buyer directly to the carrier. Shortages or damages must be identified and signed for at the time of delivery.

Buyer shall inspect Goods delivered to it by Seller immediately upon receipt, and, any course of dealing to the contrary notwithstanding, failure of Buyer to give Seller notice of any claim within 10 days after receipt of such Goods shall be an unqualified acceptance of such Goods.
5. LIMITED WARRANTY: Subject to the limitations of Section 6 and unless otherwise specified by Seller in writing, Seller warrants that the Goods manufactured by Seller will be free from defects in material and workmanship and substantially meet Seller's published specifications at the time of shipment under normal use and regular service and maintenance for (a) the period specified in Seller's then current product data sheets from the date of manufacture by Seller for standard Embedded Power Goods, (b) two (2) years from initial shipment for standard Embedded Computing Goods, and (c) the period specified by Seller in writing for custom Embedded Power Goods and custom Embedded Computing Goods. Unless
otherwise stated in a separate Software license agreement, Seller makes no warranty as to any Software. THE WARRANTIES SET FORTH IN SECTIONS 5 AND 7 ARE THE SOLE AND EXCLUSIVE WARRANTIES GIVEN BY SELLER WITH RESPECT TO THE GOODS AND SOFTWARE AND ARE IN LIEU OF AND EXCLUDE ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, ARISING BY OPERATION OF LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WHETHER OR NOT THE PURPOSE OR USE HAS BEEN DISCLOSED TO SELLER IN SPECIFICATIONS, DRAWINGS OR OTHERWISE, AND WHETHER OR NOT SELLER'S PRODUCTS ARE SPECIFICALLY DESIGNED AND/OR MANUFACTURED BY SELLER FOR BUYER'S USE OR PURPOSE.

These warranties do not extend to any losses or damages due to misuse, accident, abuse, neglect, negligence (other than Seller's), unauthorized modification or alteration, use beyond rated capacity, unsuitable power sources or environmental conditions, improper installation, repair, handling, maintenance or application or any other cause not the fault of Seller. To the extent that Buyer or its agents have supplied specifications, information, representation of operating conditions or other data to Seller in the selection or design of the Goods and the preparation of Seller's quotation, and in the event that actual operating conditions or other conditions differ from those represented by Buyer, any warranties or other provisions contained herein that are affected by such conditions shall be null and void.

If within thirty (30) days after Buyer's discovery of any warranty defects within the warranty period, Buyer notifies Seller thereof in writing, Seller shall, at its option and as Buyer's exclusive remedy, repair, correct or replace per its return policy, or refund the purchase price for, that portion of the Goods found by Seller to be defective. Failure by Buyer to give such written notice within the applicable time period shall be deemed an absolute and unconditional waiver of Buyer's claim for such defects. Advance written permission to return Goods must be obtained from Seller. Such Goods must be shipped transportation prepaid to Seller. Returns made without proper written permission will not be accepted by Seller. Seller reserves the right to inspect Goods prior to authorizing return. Goods repaired or replaced during the warranty period shall be covered by the foregoing warranties for the remainder of the original warranty period or ninety (90) days from the date of shipment, whichever is longer.

Buyer assumes all other responsibility for any loss, damage, or injury to persons or property arising out of, connected with, or resulting from the use of Goods and/or Software, either alone or in combination with other products/components.

6. LIMITATION OF REMEDY AND LIABILITY: THE SOLE AND EXCLUSIVE REMEDY FOR BREACH OF ANY WARRANTY HEREUNDER (OTHER THAN THE WARRANTY PROVIDED UNDER SECTION 7) SHALL BE LIMITED TO REPAIR, CORRECTION OR REPLACEMENT, OR REFUND OF THE PURCHASE PRICE UNDER SECTION 5.

SELLER SHALL NOT BE LIABLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE AND THE REMEDIES OF BUYER SET FORTH IN THIS AGREEMENT ARE EXCLUSIVE. IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT OR OTHERWISE), SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXCEED THE PRICE PAID BY BUYER FOR THE SPECIFIC GOODS OR SOFTWARE PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXTEND TO INCLUDE INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES. The term "consequential damages" shall include, but not be limited to, loss of anticipated profits, business interruption, loss of use, revenue, reputation and data, costs incurred, including without limitation, for capital, fuel, power and loss or damage to property or equipment.

It is expressly understood that any technical advice furnished by Seller with respect to the use of the Goods and/or Software is given without charge, and Seller assumes no obligation or liability for the advice given, or results obtained, all such advice being given and accepted at Buyer's risk.
7. PATENTS AND COPYRIGHTS: Subject to the limitations of the second paragraph of Section 6, Seller warrants that the Goods sold, except as are made specifically for Buyer according to Buyer's specifications, do not infringe any valid U.S. patent or copyright in existence as of the date of shipment. This warranty is given upon the condition that Buyer promptly notify Seller of any claim or suit involving Buyer in which such infringement is alleged and cooperate fully with Seller and permit Seller to control completely the defense, settlement or compromise of any such allegation of infringement. Seller's warranty as to utility patents only applies to infringement arising solely out of the inherent operation according to Seller's specifications and instructions of such Goods. In the event such Goods are held to infringe such a U.S. patent or copyright in such suit, and the use of such Goods is enjoined, or in the case of a compromise or settlement by Seller, Seller shall have the right, at its option and expense, to procure for Buyer the right to continue using such Goods, or replace them with non-infringing Goods, or modify same to become
non-infringing, or grant Buyer a credit for the depreciated value of such Goods and accept return of them. In the event of the foregoing, Seller may also, at its option, cancel the agreement as to future deliveries of such Goods, without liability.
8. EXCUSE OF PERFORMANCE: Seller shall not be liable for delays in performance or for non-performance due to acts of God; acts of Buyer; war; fire; flood; weather; sabotage; epidemics; strikes or labor disputes; civil disturbances or riots; governmental requests, restrictions, allocations, laws, regulations, orders or actions; unavailability of or delays in transportation; default of suppliers; or unforeseen circumstances or any events or causes beyond Seller's reasonable control. Deliveries or other performance may be suspended for an appropriate period of time or canceled by Seller upon notice to Buyer in the event of any of the foregoing, but the balance of the agreement shall otherwise remain unaffected as a result of the foregoing.

If Seller determines that its ability to supply the total demand for the Goods, or to obtain material used directly or indirectly in the manufacture of the Goods, is hindered, limited or made impracticable due to causes set forth in the preceding paragraph, Seller may allocate its available supply of the Goods or such material (without obligation to acquire other supplies of any such Goods or material) among its purchasers on such basis as Seller determines to be equitable without liability for any failure of performance which may result therefrom.
9. CANCELLATION: Unless otherwise agreed in writing by Seller, orders under this agreement may not be canceled by Buyer for any reason.
10. CHANGES: Buyer may request changes or additions to the Goods and/or Software consistent with Seller's specifications and criteria. In the event such changes or additions are accepted by Seller, Seller may revise the price, license fees and dates of delivery.

Seller reserves the right to change designs and specifications for the Goods and/or Software without prior notice to Buyer, except with respect to Goods and/or Software being made-to-order for Buyer. Seller shall have no obligation to install or make such change in any Goods and/or Software manufactured prior to the date of such change
11. NUCLEAR/MEDICAL: GOODS AND SOFTWARE SOLD HEREUNDER ARE NOT FOR USE IN CONNECTION WITH ANY NUCLEAR, MEDICAL, LIFESUPPORT AND OTHER HIGH RISK APPLICATIONS WHERE GOODS OR SOFTWARE FAILURE COULD LEAD TO LOSS OF LIFE OR CATASTROPHIC PROPERTY DAMAGE. Buyer accepts Goods and Software with the foregoing understanding, agrees to communicate the same in writing to any subsequent purchasers or users and to defend, indemnify and hold harmless Seller from any claims, losses, suits, judgments and damages, including incidental and consequential damages, arising from such use, whether the cause of action be based in tort, contract or otherwise, including allegations that the Seller's liability is based on negligence or strict liability.
12. ASSIGNMENT: Buyer shall not assign its rights or delegate its duties hereunder or any interest herein without the prior written consent of Seller, and any such assignment, without such consent, shall be void
13. SOFTWARE: Notwithstanding any other provision herein to the contrary, Seller or applicable third party licensor to Seller shall retain all rights of ownership and title in its respective Software, including without limitation all rights of ownership and title in its respective copies of such Software. Except as otherwise provided herein, Buyer is hereby granted a nonexclusive, non-transferable royalty free license to use the Software incorporated into the Goods solely for purposes of Buyer properly utilizing such Goods purchased from Seller. All other Software shall be furnished to and used by, Buyer only after execution of Seller's (or the licensor's) applicable standard license agreement, the terms of which are incorporated herein by reference. The Software is Seller's own or Seller's supplier's proprietary information, and Buyer and its employees and agents shall not disclose the Software to others without Seller's prior written consent.
14.TOOLING: Tool, die, and pattern charges, if any, are in addition to the price of the Goods and are due and payable upon completion of the tooling. All such tools, dies and patterns shall be and remain the property of Seller. Charges for tools, dies, and patterns do not convey to Buyer, title, ownership interest in, or rights to possession or removal, or prevent their use by Seller for other purchasers, except as otherwise expressly provided by Seller and Buyer in writing with reference to this provision.
15.DRAWINGS: Seller's prints and drawings (including without limitation, the underlying technology) furnished by Seller to Buyer in connection with this agreement are the property of Seller and Seller retains all rights, including without limitation, exclusive rights of use, licensing and sale. Possession of such prints or drawings does not convey to Buyer any rights or license, and Buyer shall return all copies (in whatever medium) of such prints or drawings to Seller immediately upon request therefor.
16. BUYER'S COMPLIANCE WITH LAWS: In connection with the transactions con-
emplated by this agreement, Buyer is familiar with and shall fully comply with all applicable laws, regulations, rules and other requirements of the United States and of any applicable state, foreign and local governmental body in connection with the purchase, license, receipt, use, transfer and disposal of the Goods and/or Software.
17.EXPORT/IMPORT: Buyer agrees that all applicable import and export control laws, regulations, orders and requirements, including without limitation those of the United States and the European Union, and the jurisdictions in which the Seller and Buyer are established or from which Goods and/or Software may be supplied, will apply to their receipt and use. In no event shall Buyer use, transfer, release, import, export, Goods and/or Software in violation of such applicable laws, regulations, orders or requirements.
18. GOVERNMENT CONTRACT CONDITIONS: In the event Buyer supplies Goods or Software to the U.S. Government or to a prime contractor selling to the U.S. Government, the following Federal Acquisition Regulation (FAR) clauses are accepted by Seller and are made part of this agreement applicable to such supply: 52.222-21 Prohibition of Segregated Facilities; 52.222-26 Equal Opportunity; 52.222-35 Equal Opportunity For Special Disabled Veterans, Veterans of Vietnam Era, and Other Eligible Veterans; 52.222-36 Affirmative Action For Workers with Disabilities; and 52.219-8 Utilization of Small Business Concerns. No additional FAR or FAR Supplement clauses are accepted by Seller. In the event Buyer elects to sell Goods or Software to the U.S. Government or any national, state, provincial or local non-U.S. governmental entity or to a prime contractor selling to such entities, Buyer does so solely at its own option and risk, and agrees not to obligate Seller as a subcontractor or otherwise to the U.S. Government or other governmental entity except as described in this Section 18. Buyer remains solely and exclusively responsible for compliance with all statutes and regulations governing sales to the U.S. Government or any national, state, provincial or local non-U.S. governmental entity. Seller makes no representations, certifications or warranties whatsoever with respect to the ability of its Goods, Software, or prices to satisfy any such statutes and regulations.
19. GENERAL PROVISIONS: These terms and conditions supersede all other communications, negotiations and prior oral or written statements regarding the subject matter of these terms and conditions. No change, modification, rescission, discharge, abandonment, or waiver of these terms and conditions shall be binding upon the Seller unless made in writing and signed on its behalf by a duly authorized representative of Seller. No conditions, usage of trade, course of dealing or performance, understanding or agreement purporting to modify, vary, explain, or supplement these terms and conditions shall be binding unless hereafter made in writing and signed by the party to be bound, and no modification or additional terms shall be applicable to this agreement by Seller's receipt, acknowledgment, or acceptance of purchase orders, shipping instruction forms, or other documentation containing terms at variance with or in addition to those set forth herein. Any such modifications or additional terms are specifically rejected and deemed a material alteration hereof. If this document shall be deemed an acceptance of a prior offer by Buyer, such acceptance is expressly conditional upon Buyer's assent to any additional or different terms set forth herein. No waiver by either party with respect to any breach or default or of any right or remedy, and no course of dealing, shall be deemed to constitute a continuing waiver of any other breach or default or of any other right or remedy, unless such waiver be expressed in writing and signed by the party to be bound. All typographical or clerical errors made by Seller in any quotation, acknowledgment or publication are subject to correction. In the event that any provision or portion thereof contained in the Contract is held to be unenforceable, the Contract shall be construed without such provision or portion thereof.
(A) If Seller is a U.S. incorporated entity: This Agreement shall be governed by the laws of the State of Delaware, U.S.A., without reference to its choice or conflict of laws principles. The parties agree to submit to the exclusive jurisdiction of the courts of the State of Delaware for all actions arising in connection herewith.
B) If Seller is a European incorporated entity: This Agreement shall be governed by the laws of England. Any dispute arising out of or in connection with this Agreement that cannot be resolved through friendly consultation shall be referred to and finally resolved by arbitration in London, England before the London Court of International Arbitration in accordance with its arbitration rules. The arbitral award shall be final and binding on the parties.
(C) If Seller is an entity incorporated in the Asia Pacific region: This Agreement shall be governed by the laws of the Hong Kong Special Administrative Region of the People's Republic of China. Any dispute arising out of or in connection with this Agreement that cannot be resolved through friendly consultation shall be referred to and finally resolved by arbitration in Hong Kong before the Hong Kong International Arbitration Centre in accordance with its arbitration rules. The arbitral award shall be final and binding on the parties.
(D) No action, regardless of form, arising out of transactions relating to this agreement, may be brought by either party more than two (2) years after the cause of action has accrued. The U.N. Convention on Contracts for the International Sales of Goods shall not apply to this agreement.

Revised November 2, 2007

section	page	section	page	section	page
Low Power		Intelligent High Power		Industry Standard Non-Isolated	
LCT	4	iVS	15, 23, 24, 25, 26	APA	49
LPS	4, 5, 6, 7, 8, 9, 10, 13, 14	Bulk Power		ATC	37
LPT	4, 5, 6, 7, 13, 14	Bulk		APC	49
LPQ	7, 9, 10	HPS	27, 28	DDR	53
NFS	5, 7, 8, 13, 14	Distributed Power		LDO	48
NLP	4, 6, 7, 8, 9, 10, 14	DS	29, 30, 31	PTV	52
NTS	10, 15	Din Rail		PTH	51, 52
NTQ	8,9			SIL	47, 48, 49
External Power		ADN	33	SMT	47, 48, 49, 50
AD	12,15	MicroTCA		NXI	53
DA	11	MTC	34,35	VRM	53
DCH	11			High Power	
DPS	12, 15	Industry Standard		AIF	55
DPT	12, 15			AIH	55
SSL	11	AED	43,44	AIT	55
Medical Power		AEO	39,40	AEE	56
AD	15	AEQ	41	AUA	59
DPT	15	ALD	38,46	AUG	59
DPS	15	ALH	43	AUK	59
iMP	15	ALO	39,40	AUM	59
iVS	15	ALQ	41, 42, 46	AVC	59
LPS	13, 14	BXB	44	BXA	57
LPT	13, 14	EXB	43, 44	CXA	58
NLP	14	EXQ	42	SXE	57
NFS	13, 14	IBC	46		
NTS	15	LES	39,40		57
TLP	14	LQD	42		
Medium Power		LQS	41		
		RFB	45		
MP	16, 17, 18	RFF	45		
Intelligent Medium Power					
$i \mathrm{MP}$	15, 19, 20, 21, 22				

Americas

5810 Van Allen Way
Carlsbad, CA 92008
USA
Telephone: +1 7609304600
Facsimile: +1760930 0698

Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX
United Kingdom
Telephone: +44 (0) 1384842211
Facsimile: $+44(0) 1384843355$

Asia (HK)

14/F, Lu Plaza
2 Wing Yip Street
Kwun Tong, Kowloon Hong Kong
Telephone: +852 21763333
Facsimile: +852 21763888

For global contact, visit: www.powerconversion.com techsupport.embeddedpower @emerson.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.

The world leader in business-critical continuity solutions.

Printed in USA

Issue SF4

\square AC Power	\square Embedded Computing	\square Outside Plant	\square Racks \& Integrated Cabinets
Connectivity	\square Embedded Power	\square Power Switching \& Controls	\square Services
DC Power	\square Monitoring	\square	Precision Cooling

[^0]: Options
 [] Rating with 30 CFM of air
 (1) Optional cover/enclosure

 * Floating output
 (I) Optional industrial version - wide temp range

[^1]: Options:

 E To order an enclosed version of the NLP65-9608J, add suffix 'EJ' to the end of the model number, e.g. NLP65-9608EJ. The enclosed version includes: IEC connector, on/off switch, wire harness output connector and fitted cover.
 G A safety earth ground pin and ground choke are available as an option. To order, please add the suffix 'GJ' to the end of the model number e.g. NLP65-9612GJ.

[^2]: Options:
 [] Rating with 30 CFM of air
 (1) Optional cover/enclosure
 (2) Optional bracket
 (5) These models feature harmonic current correction to EN61000-3-2 Floating output

[^3]: Options:

 F Replace the 'J' at the end of the model number with 'FJ' when the optional standby output and / or remote ON / OFF control is required e.g. TLP150N-99S12FJ
 [] Rating with 30 CFM of air
 (1) Optional cover/enclosure

[^4]: *See web site for option codes on HPR racks.

[^5]: Notes: • = Available

[^6]: *NFC Class 2 approval

