1 Form A Photo Darlington Telecom Switch

DESCRIPTION

The LH1539 telecom switch consists of an optically isolated solid state relay (SSR) form A and a bidirectional input optocoupler in a single 8-pin package. The SSR is ideal for switch hook and dial-pulse switching while the optocoupler performs ring detect and loop current sensing functions. Both the SSR and optocoupler provide $5300 \mathrm{~V}_{\text {RMS }}$ of input-to-output isolation voltage.
The SSR is integrated on a monolithic receptor die using smart power technology. The SSR features low On resistance, high breakdown voltage, and current-limit circuitry that protects the relay from telephone line induced lightning surges.
The optocoupler provides bidirectional current sensing via two anti parallel GaAs infrared emitting diodes. Very high current transfer ratio (CTR) is achieved by coupling to a photodarlington transistor. This high CTR allows the user to minimize the size of the ring detector capacitor.

FEATURES

- Solid state relay and autopolarity optocoupler in one 8-pin package

- Isolation test voltage $5300 \mathrm{~V}_{\mathrm{RMS}}$
- Surface mountable
- Optocoupler
- Bidirectional current detection
- High CTR: ≥ 300 \%
- Solid state relay
- Form A LH1525 type
- Low operating current
- Typical RoN 25Ω
- Load voltage 400 V
- Load current 120 mA
- Current limit protection
- Linear, AC/DC operation
- Clean bounce free switching
- Low power consumption
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- General telecom switching
- On/off hook switching
- Dial pulse
- Ring current detection
- Loop current sensing

AGENCY APPROVALS

UL1577: file no. E52744 system code H, double protection
CSA: certification no. 093751
BSI/BABT: certification no. 7980

ORDERING INFORMATION

Vishay Semiconductors 1 Form A Photo Darlington Telecom Switch

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
SSR				
INPUT				
LED continuous forward current		I_{F}	50	mA
LED reverse voltage	$\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	V_{R}	8	V
OUTPUT				
DC or peak AC load voltage	l L $\leq 50 \mu \mathrm{~A}$	V_{L}	400	V
Continuous DC load current		I_{L}	120	mA
SSR				
Ambient operating temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Pin soldering temperature ${ }^{(1)}$	$\mathrm{t}=10 \mathrm{~s}$ max.	$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$
Input to output isolation voltage	$\mathrm{t}=60 \mathrm{~s}$ min.	$\mathrm{V}_{\text {ISO }}$	5300	$\mathrm{V}_{\text {RMS }}$
Package power dissipation (continuous)		$\mathrm{P}_{\text {diss }}$	600	mW
OPTOCOUPLER				
INPUT				
LED continuous forward current		I_{F}	50	mA
LED reverse voltage	$\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	V_{R}	3	V
OUTPUT				
Collector emitter breakdown voltage		$\mathrm{BV}_{\text {CEO }}$	30	V
Phototransistor power dissipation		$\mathrm{P}_{\text {diss }}$	150	mW

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
${ }^{(1)}$ Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
LED forward current, switch turn-on	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {Fon }}$		0.5	1	mA
LED forward current, switch turn-off	$\mathrm{V}_{\mathrm{L}}= \pm 300 \mathrm{~V}$	$\mathrm{I}_{\text {Foff }}$	0.1	0.4		mA
LED forward voltage	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$	V_{F}	0.8	1.2	1.4	V
OUTPUT						
On-resistance	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}= \pm 50 \mathrm{~mA}$	R_{ON}	17	25	33	Ω
Off-resistance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$	$\mathrm{R}_{\text {OFF }}$		5000		$\mathrm{G} \Omega$
Current limit	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{t}=5 \mathrm{~ms}$	$\mathrm{I}_{\text {LMT }}$	170	210	270	mA
Off-state leakage current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$	l_{0}		0.04	100	nA
Capacitance pin 4 to pin 6	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=1 \mathrm{~V}$	C_{0}		55		pF
	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=50 \mathrm{~V}$	C_{0}		10		pF
TRANSFER						
Optocoupler						
LED forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	0.9	1.2	1.5	V
DC current transfer ratio	$\mathrm{I}_{\mathrm{F}}=0.05 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.9 \mathrm{~V}$	CTR ${ }_{\text {DC }}$	300			\%
Saturation voltage	$\mathrm{I}_{\mathrm{F}}=0.05 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.15 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$			1	V
Collector emitter leakage current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {CEO }}$			N/A	

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

| SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT |
| Turn-on time | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ | t_{on} | | | 2 | ms |
| Turn-off time | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ | $\mathrm{t}_{\mathrm{off}}$ | | | 0.5 | ms |
| RECOMMENDED OPERATING CONDITIONS
 PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
 LED forward current, switch turn-on $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{I}_{\text {Fon }}$ 3 20 mA | | | | | | |

LH1539AAC, LH1539AACTR, LH1539AB

1 Form A Photo Darlington Telecom Vishay Semiconductors Switch

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 1 - LED Voltage vs. Temperature

Fig. 2 - LED Current for Switch Turn-on/off vs. Temperature

Fig. 3 - On-Resistance vs. Temperature

Fig. 4 - LED Dropout Voltage vs. Temperature

Fig. 5 - Current Limit vs. Temperature

Fig. 6 - Variation in On-Resistance vs. LED Current

Vishay Semiconductors 1 Form A Photo Darlington Telecom Switch

Fig. 7 - Output Isolation

Fig. 8 - Output Isolation

Fig. 9 - Leakage Current vs. Applied Voltage at Elevated Temperatures

Fig. 10 - Insertion Loss vs. Frequency

Fig. 11 - Leakage Current vs. Applied Voltage

Fig. 12 - Switch Breakdown Voltage vs. Temperature

1 Form A Photo Darlington Telecom Vishay Semiconductors Switch

PACKAGE DIMENSIONS in millimeters

DIP

PACKAGE MARKING (example)

Note

- Tape and reel suffix (TR) is not part of the package marking.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

