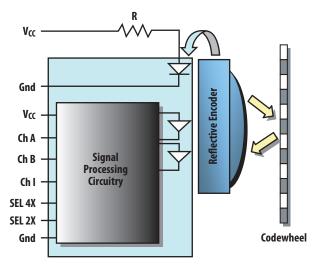

AEDR-850x

3 Channel Reflective Incremental Encoders

Data Sheet



Description

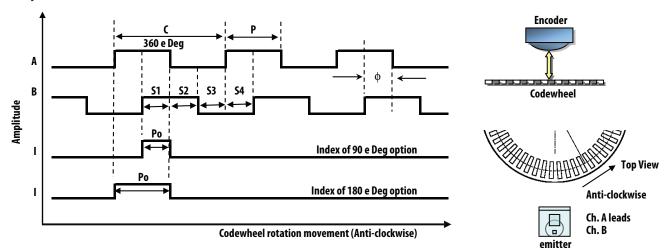
The AEDR-850X encoder is the smallest 3 channels optical encoder with digital outputs in the market employing reflective technology for motion control purposes. The encoder is designed to operate over -20° C to 85° C temperature range and hence suitable for both commercial and even industrial end applications.

The encoder houses an LED light source and a photodetecting circuitry in a single package. The small size of 3.95 mm (L) x 3.4 mm (W) x 0.9562 mm (H), allows it to be even used in a wide range of miniature commercial application where size and space is a primary concern.

The AEDR-850X encoder offers two-channel quadrature digital outputs and a 3rd channel, index digital outputs. Being TTL compatible, the outputs of the AEDR-850X encoder can be interfaced directly with most of the signal processing circuitries. Hence the encoder provides great design-in flexibility and easy integration into existing systems.

Note: Drawing not to scale.

Features


- World smallest 3 channels reflective technology encoder.
- Surface mount leadless package 3.95 mm (L) x 3.4 mm (W) x 0.9562 mm (H)
- 3 channels; two channel quadrature digital outputs for direction sensing and a 3rd channel, Index digital output.
- Build in interpolator, factor of 1x, 2x and 4x selectable via external pinouts
- TTL compatible
- Single 5 V supply
- -20° C to 85° C absolute operating temperature
- Encoding resolution:
- 304 (lines/inch) or 12 (lines/mm)

Applications

Ideal for high volume applications:

- Close Loop stepper Motors
- Miniature Motors
- Printers
- Copiers
- Card readers
- Scanners
- Projectors
- Consumer and Industrial Product Applications

Output waveform

QUADRATURE SIGNALS A, B and I

Absolute Maximum Ratings

Storage Temperature, T _S	-20° C to 85° C
Operating Temperature, T _A	-20° C to 85° C
Supply Voltage, V _{CC}	7 V
Output Voltage, V _O	V _{CC}

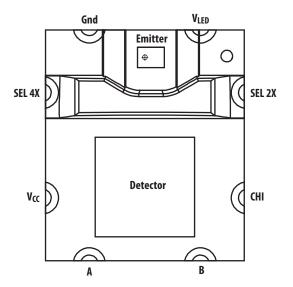
Notes:

1. Exposure to extreme light intensity (such as from flashbulbs or spotlights) may cause permanent damage to the device.

 CAUTION: It is advised that normal static precautions should be taken when handling the encoder in order to avoid damage and/or degradation induced by ESD.

3. Proper operation of the encoder cannot be guaranteed if the maximum ratings are exceeded.

Recommended Operating Conditions (based on limited prototype samples testing @ 11 Rop codewheel)


	-			• •		
Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
Temperature	T _A	-20	25	85	°C	
Supply Voltage	V _{CC}	4.5	5	5.5	V	Ripple < 100mVp-p
LED Current	I _{LED}		15mA		mA	See note 1
Count Frequency ²	F		56		kHz	1 x Interpolation Factor
Radial Misalignment	E _R			±0.2	mm	
Tangential Misalignment	ET			±0.2	mm	
Codewheel Gap	G	0.5		1	mm	

Notes:

1. LED Current Limiting Resistor: Recommended series resistor = 180 Ω (±1%)

2. Count frequency = velocity (rpm) x CPR / 60.

Encoder Pin-Out

Pin configuration (Top view)

Encoder's Built-in Interpolation

ition)	Interpolation	CPR @	Count	
SEL 2X	Factor	$(R_{0P} = 11 \text{ mm})$	Frequency	
L	1X	828	55 KHz	
Н	2X	1656	110 KHz	
L	4X	3312	220 KHz	
Н	Factory use			
	SEL 2X L H L	SEL 2XFactorL1XH2XL4X	SEL 2X Factor (R ₀ P = 11 mm) L 1X 828 H 2X 1656 L 4X 3312	SEL 2X Factor (R ₀ P = 11 mm) Frequency L 1X 828 55 KHz H 2X 1656 110 KHz L 4X 3312 220 KHz

H = HIGH Logic Level L = LOW Logic Level

The interpolation factor above may be used in conjunction with the below formulae to cater the needs for various rotation speed (RPM) and count.

RPM = (Count Frequency x 60) / CPR

The CPR (@ 1X interpolation) is based on the following formulae which is directly dependent on ROP

$CPR = LPI \times 2\pi \times R_{OP}$ (inch) or	Note : LPI (lines per inch) is fixed at 304 by the AEDR-850X.
$CPR = LPmm \times 2\pi \times R_{OP} (mm)$	LPmm (lines per mm) = 304/25.4

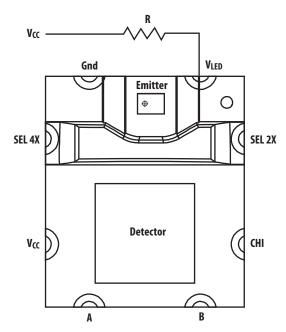
Encoding Characteristics (Codewheel of Rop @11 mm)

Parameter	Symbol	Typical	Unit		
Interpolation factor		1 X	2 X	4 X	
Cycle Error	ΔC	18	22	36	°e
Pulse Width Error	ΔΡ	15	20	30	°e
Phase Error	$\Delta \phi$	9	15	18	°e
State Error	ΔS	10	15	25	°e

Encoding characteristics over the recommended operating condition and mounting conditions.

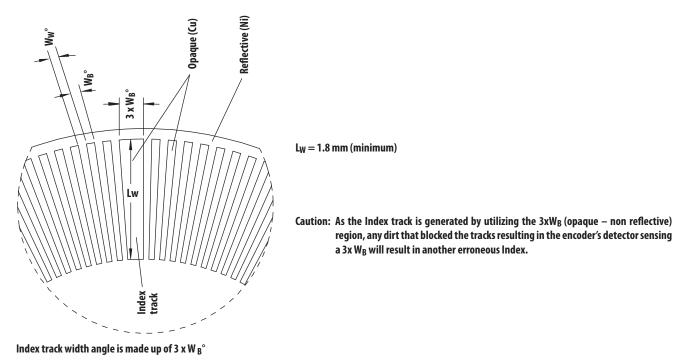
Note:

Typical values represent the encoder performance at typical mounting alignment, whereas the maximum values represent the encoder performance across the range of recommended mounting tolerance.

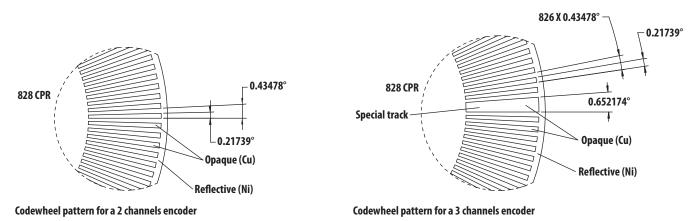

Electrical Characteristics

Characteristics over recommended operating conditions at 25° C.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
High Level Output Voltage	V _{OH}	2.4			V	
Low Level Output Voltage	V _{OL}			0.4	V	
Rise Time	t _r		<100		ns	
Fall Time	t _f		<100		ns	


LED Current Limiting Resistor

A resistor to limit the current to the LED is required. The recommended value is 180 Ω (±1%) and the resistor should be placed in series between the 5 V supply and pin VLED of the encoder. This will result in an LED current of approximately 15 mA for optimal encoder performance.


Codewheel Characteristics

The most important dimension to remember is that the index (I) channel pattern on the codewheel, the width angle is made up of $3 \times W_B^\circ$ (opaque-non reflective region).

Codewheel Design Example

The following example demonstrates a codewheel design for a Rop of 11 mm @ 828 CPR for a typical 2 channels encoder. In the case for an index track design, special index tracks have to be utilized.

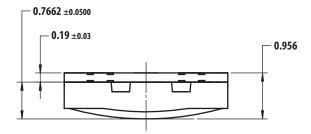
Notes:

a). 2 tracks from the original 828 CPR, 2 channels codewheel design have been utilized for the special track(Index), but CPR remains the same.

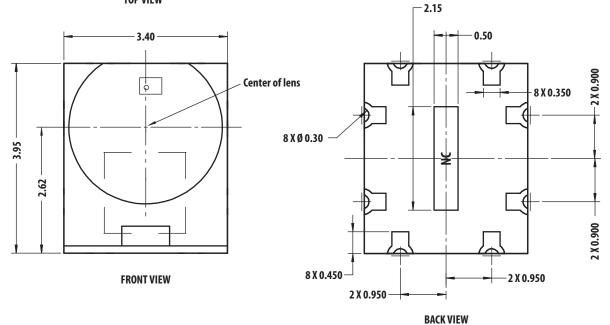
Recommended Codewheel Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
Window/bar Ratio	Ww/Wb	0.9	1.1		
Window/bar Length	L _W	1.80 (0.071)	-	mm (inches)	
Specular Reflectance	R _f	60	-		Reflective area. See note 1.
		_	10		Non reflective area
Line Density	LPmm	11.9	68	lines/mm	
	LPI	30	4	lines/inch	Default value by design at IC level

Notes:

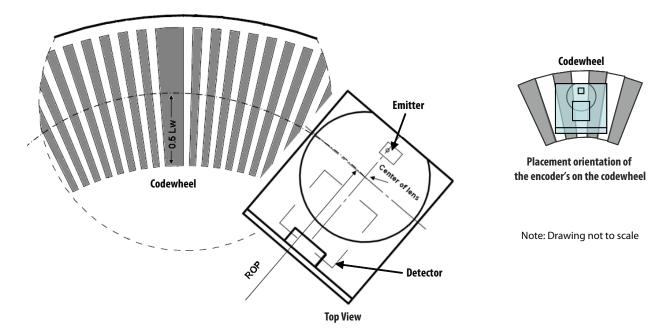

1. Measurements from TMA $\mu Scan$ meter.

2. LPmm = CPR / $[2\pi$.Rop(mm)]


Moisture Sensitivity Level

The AEDR-850X is specified to moisture sensitive level (MSL) 3.

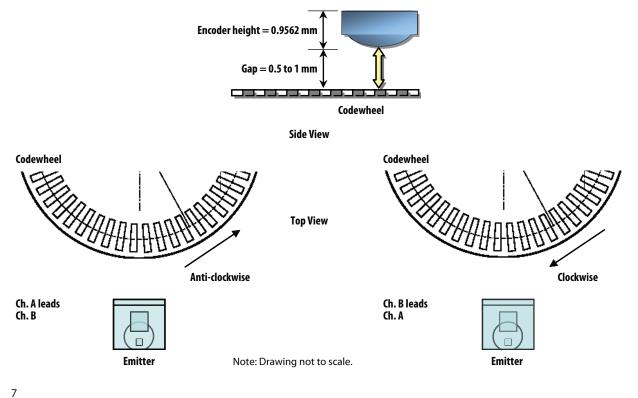
Outline Drawing

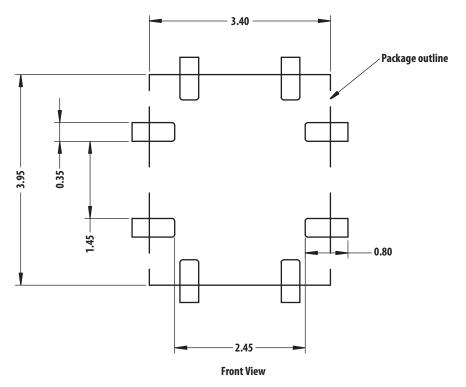


* All dimensions in millimeter. Tolerance $x.xx\pm0.15~\text{mm}$

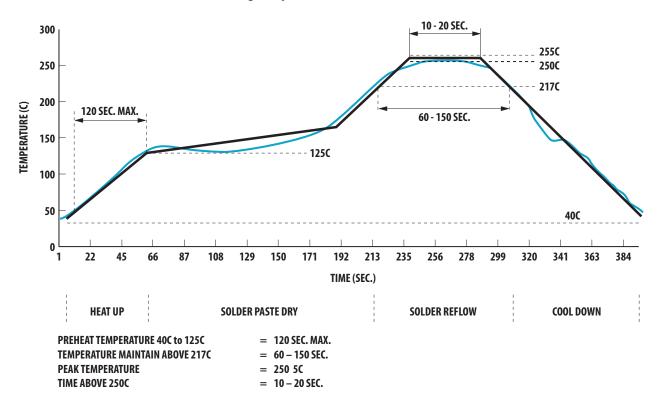
Encoder Placement Orientation and Positioning

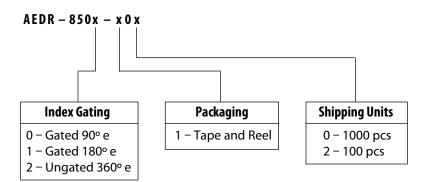
The AEDR-850X is designed such that both the emitter and detector IC should be placed parallel to the window/bar orientation, as shown (*with the encoder mounted on top of the codewheel*. See view below).


Most importantly, **the center of the lens** of the encoder unit; needs to be in line with the operating radius of the codewheel (R_{OP}) or rather the center point of Lw (0.5 of the Length of Window). Lw is recommended to be 1.8 mm or greater.


Direction of Movement

With the **detector side of the encoder placed closer to the codewheel centre**, see the above top view; Channel A leads Channel B when the codewheel rotates anti-clockwise and vice versa (*with the encoder mounted on top of the codewheel*).


The optimal gap setting recommended is between 0.5 mm to 1 mm (See side view below).


Recommended Land Pattern for AEDR-850X

Recommended Lead-free Reflow Soldering Temperature Profile

Ordering Information

For product information and a complete list of distributors, please go to our web site: www.a

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2790EN - February 23, 2011

