

Vishay Semiconductors

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

TO-220AB

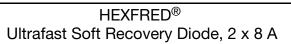
PRODUCT SUMMARY						
Package	TO-220AB					
I _{F(AV)}	2 x 8 A					
V_{R}	600 V					
V _F at I _F	1.7 V					
t _{rr} (typ.)	18 ns					
T _J max.	150 °C					
Diode variation	Common cathode					

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified for industrial level

BENEFITS

- · Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- Higher frequency operation
- · Reduced snubbing
- · Reduced parts count


DESCRIPTION

VS-HFA16TA60CPbF is a state of the art center tap ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A per leg continuous current, the VS-HFA16TA60CPbF is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the to portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED VS-HFA16TA60CPbF is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Cathode to anode voltage	V _R		600	V			
Maximum continuous forward current per leg	- I _F	T _C = 100 °C	8	^			
per device			16				
Single pulse forward current	I _{FSM}		60	А			
Maximum repetitive forward current	I _{FRM}		24				
Manifestor and the size of the		T _C = 25 °C	36	147			
Maximum power dissipation	P_{D}	T _C = 100 °C	14	W			
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C			

VS-HFA16TA60CPbF

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V_{BR}	Ι _R = 100 μΑ		600	-	-	
		I _F = 8 A		-	1.4	1.7	V
Maximum forward voltage	V_{FM}	I _F = 16 A	See fig. 1	-	1.7	2.1	
		I _F = 8 A, T _J = 125 °C		-	1.4	1.7	
Maximum reverse		V _R = V _R rated	Coo fig. 0	-	0.3	5.0	
leakage current	I _{RM}	$T_J = 125$ °C, $V_R = 0.8 \times V_R$ rated	See fig. 2	-	100	500	μA
Junction capacitance	C _T	V _R = 200 V	See fig. 3	-	10	25	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body		-	8.0	-	nH

DYNAMIC RECOVERY CHARACTERISTICS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS	
	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	18	-	
Reverse recovery time See fig. 5 and 10	t _{rr1}	T _J = 25 °C		-	37	55	ns
Gee lig. 5 and 10	t _{rr2}	T _J = 125 °C		-	55	90	
Peak recovery current	I _{RRM1}	T _J = 25 °C	I _F = 8.0 A	-	3.5	5.0	А
See fig. 6	I _{RRM2}	T _J = 125 °C		-	4.5	8.0	
Reverse recovery charge	Q _{rr1}	T _J = 25 °C	dl _F /dt = 200 A/µs	-	65	138	nC
See fig. 7	Q _{rr2}	T _J = 125 °C	V _R = 200 V	-	124	360	IIC
Peak rate of fall recovery current during t _b See fig. 8	dI _{(rec)M} /dt1	T _J = 25 °C		-	240	-	Δ/
	dI _{(rec)M} /dt2	T _J = 125 °C		-	210	-	A/µs

THERMAL - MECHANICAL SPECIFICATIONS PER LEG							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Junction to case, single leg conducting			-	-	3.5		
Junction to case, both legs conducting	R _{thJC}		-	-	1.75	K/W	
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	- 17/11	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
Weight			-	2.0	-	g	
Weight			-	0.07	-	oz.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)	
Marking device		Case style TO-220AB		HFA16	TA60C	•	

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

Vishay Semiconductors

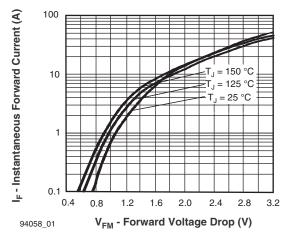


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

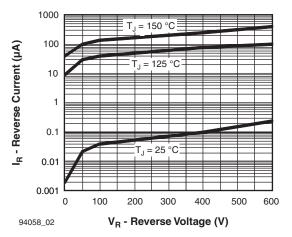


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

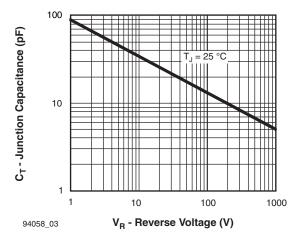


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

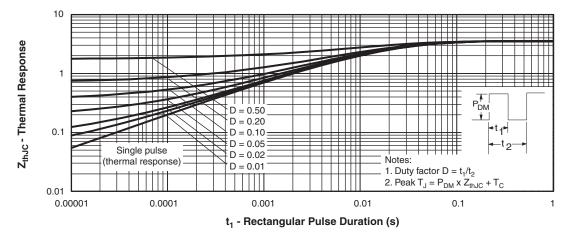


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)

Document Number: 94058 Revision: 09-May-11

Vishay Semiconductors

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

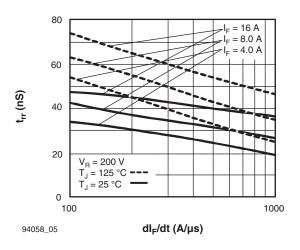


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt (Per Leg)

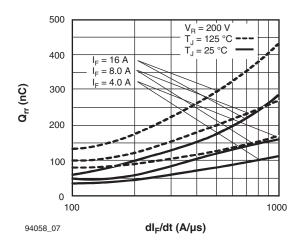


Fig. 7 - Typical Stored Charge vs. dl_F/dt (Per Leg)

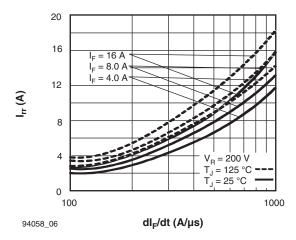


Fig. 6 - Typical Recovery Current vs. dl_F/dt (Per Leg)

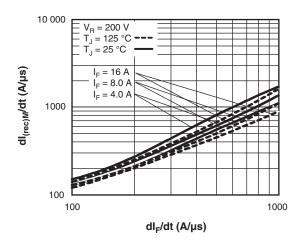


Fig. 8 - Typical dI_{(rec)M}/dt vs. dI_F/dt (Per Leg)

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

Vishay Semiconductors

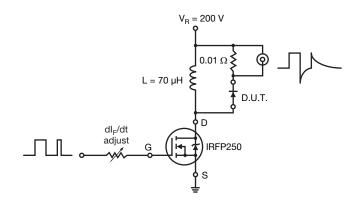
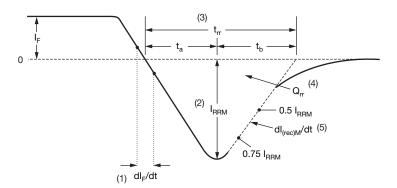



Fig. 9 - Reverse Recovery Parameter Test Circuit

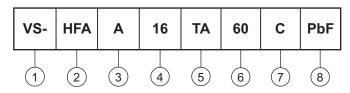
- (1) dl_E/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (4) Q_{rr} area under curve defined by t_{rr} and I_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during tb portion of tr

Fig. 10 - Reverse Recovery Waveform and Definitions

VS-HFA16TA60CPbF


Vishay Semiconductors

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

HEXFRED® family

Electron irradiated

Current rating (16 = 16 A)

Package:

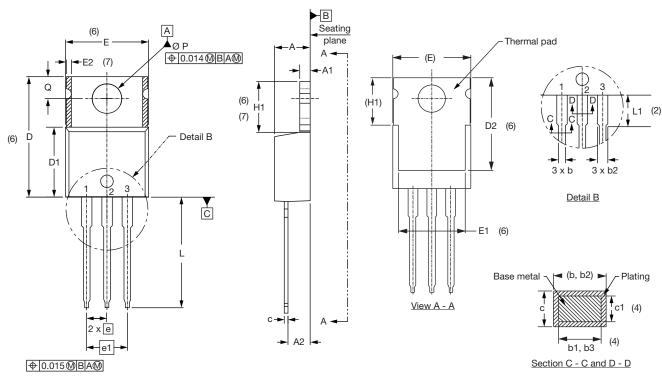
TA = TO-220AB

Voltage rating (60 = 600 V)

Circuit configuration: C = Common cathode

PbF = Lead (Pb)-free 8

Tube standard pack quantity: 50 pieces


LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95222					
Part marking information <u>www.vishay.com/doc?95225</u>					

Vishay Semiconductors

TO-220AB

DIMENSIONS in millimeters and inches

Lead assignments

Diodes

- 1. Anode/open
- 2. Cathode
- 3. Anode

Conforms to JEDEC outline TO-220AB

MILLIN	IETERS	INCHES		NOTES
MIN.	MAX.	MIN.	MAX.	NOTES
4.25	4.65	0.167	0.183	
1.14	1.40	0.045	0.055	
2.56	2.92	0.101	0.115	
0.69	1.01	0.027	0.040	
0.38	0.97	0.015	0.038	4
1.20	1.73	0.047	0.068	
1.14	1.73	0.045	0.068	4
0.36	0.61	0.014	0.024	
0.36	0.56	0.014	0.022	4
14.85	15.25	0.585	0.600	3
8.38	9.02	0.330	0.355	
11.68	12.88	0.460	0.507	6
	MIN. 4.25 1.14 2.56 0.69 0.38 1.20 1.14 0.36 0.36 14.85 8.38	4.25 4.65 1.14 1.40 2.56 2.92 0.69 1.01 0.38 0.97 1.20 1.73 1.14 1.73 0.36 0.61 0.36 0.56 14.85 15.25 8.38 9.02	MIN. MAX. MIN. 4.25 4.65 0.167 1.14 1.40 0.045 2.56 2.92 0.101 0.69 1.01 0.027 0.38 0.97 0.015 1.20 1.73 0.047 1.14 1.73 0.045 0.36 0.61 0.014 0.36 0.56 0.014 14.85 15.25 0.585 8.38 9.02 0.330	MIN. MAX. MIN. MAX. 4.25 4.65 0.167 0.183 1.14 1.40 0.045 0.055 2.56 2.92 0.101 0.115 0.69 1.01 0.027 0.040 0.38 0.97 0.015 0.038 1.20 1.73 0.047 0.068 1.14 1.73 0.045 0.068 0.36 0.61 0.014 0.024 0.36 0.56 0.014 0.022 14.85 15.25 0.585 0.600 8.38 9.02 0.330 0.355

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
E	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
E2	-	0.76	-	0.030	7
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6, 7
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØΡ	3.54	3.73	0.139	0.147	
Q	2.60	3.00	0.102	0.118	
θ	90° t	o 93°	90° to 93°		
	•				

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1
- (7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
- (8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline

Document Number: 95222 Revision: 08-Mar-11

Lead tip

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1