
Features

- **Epitaxial Planar Die Construction**
- Complementary PNP Types Available (DDTA)
- Built-In Biasing Resistor, R1 only
- Lead Free/RoHS Compliant (Note 2)
- "Green" Device, Note 3 and 4

Mechanical Data

- Case: SC-59
- Case Material: Molded Plastic, "Green" Molding Compound, Note 4. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Copper leadframe).
- Terminal Connections: See Diagram
- Marking Information: See Diagrams & Page 3
- Ordering Information: See Page 3
- Weight: 0.008 grams (approximate)

P/N	R1 (NOM)	Type Code
DDTC113TKA	1ΚΩ	N01
DDTC123TKA	2.2KΩ	N03
DDTC143TKA	4.7KΩ	N07
DDTC114TKA	10ΚΩ	N12
DDTC124TKA	22Κ Ω	N16
DDTC144TKA	47ΚΩ	N19
DDTC115TKA	100ΚΩ	N23
DDTC125TKA	200ΚΩ	N25

SC-59								
Dim	Min	Max						
Α	0.35	0.50						
В	1.50	1.70						
C	2.70	3.00						
D	0.95							
G	1.90							
Н	2.90	3.10						
J	0.013	0.10						
K	1.00	1.30						
L	0.35	0.55						
М	0.10	0.20						
α	0°	8°						
All Dimensions in mm								

SCHEMATIC DIAGRAM

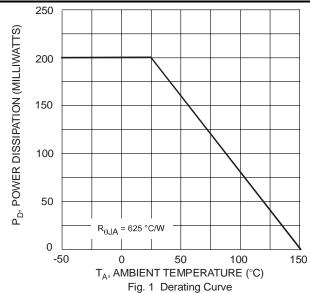
Maximum Ratings @T_A = 25°C unless otherwise specified

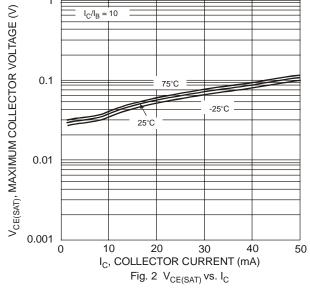
Characteristic	Symbol	Value	Unit	
Collector-Base Voltage	V _{CBO}	50	V	
Collector-Emitter Voltage	V _{CEO}	50	V	
Emitter-Base Voltage	V _{EBO}	5	V	
Collector Current	I _C (Max)	100	mA	
Power Dissipation	P _d	200	mW	
Thermal Resistance, Junction to Ambient Air (Note 1)	$R_{ heta JA}$	625	°C/W	
Operating and Storage Temperature Range	T _j , T _{STG}	-55 to +150	°C	

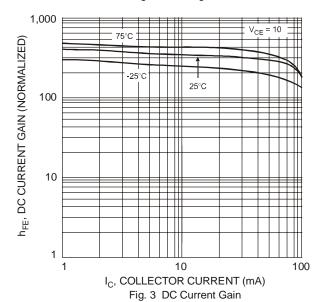
Notes:

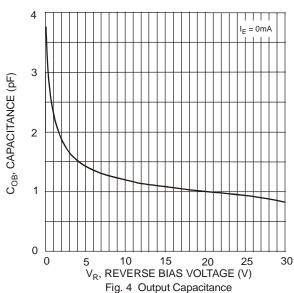
- Mounted on FR4 PC Board with recommended pad layout at http://www.diodes.com/datasheets/ap02001.pdf
- No purposefully added lead.
- Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.

 Product manufactured with Date Code 0627 (week 27, 2006) and newer are built with Green Molding Compound. Product manufactured prior to Date Code 0627 are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.

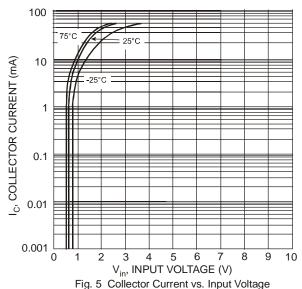


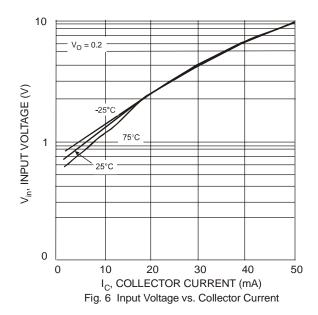

Electrical Characteristics @TA = 25°C unless otherwise specified

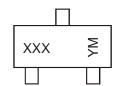

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV_{CBO}	50			>	$I_C = 50\mu A$
Collector-Emitter Breakdown Voltage	BV _{CEO}	50			>	$I_C = 1mA$
Emitter-Base Breakdown Voltage	BV_{EBO}	5	_		V	$I_E = 50\mu A$
Collector Cutoff Current	I _{CBO}	_	_	0.5	μА	$V_{CB} = 50V$
Emitter Cutoff Current	I _{EBO}	_	_	0.5	μΑ	$V_{EB} = 4V$
Collector-Emitter Saturation Voltage	V _{CE(sat)}	_		0.3	>	$\begin{split} & _{C/IB} = 10 \text{mA}/1 \text{mA} & \text{DDTC113TKA} \\ & _{C/IB} = 5 \text{mA}/0.5 \text{mA} & \text{DDTC123TKA} \\ & _{C/IB} = 2.5 \text{mA}/.25 \text{mA} & \text{DDTC143TKA} \\ & _{C/IB} = 1 \text{mA}/.1 \text{mA} & \text{DDTC114TKA} \\ & _{C/IB} = 5 \text{mA}/0.5 \text{mA} & \text{DDTC124TKA} \\ & _{C/IB} = 2.5 \text{mA}/.25 \text{mA} & \text{DDTC144TKA} \\ & _{C/IB} = 1 \text{mA}/0.1 \text{mA} & \text{DDTC115TKA} \\ & _{C/IB} = .5 \text{mA}/.05 \text{mA} & \text{DDTC125TKA} \\ \end{split}$
DC Current Transfer Ratio	h _{FE}	100	250	600		$I_C = 1mA$, $V_{CE} = 5V$
Input Resistor (R ₁) Tolerance	ΔR_1	-30	_	+30	%	_
Gain-Bandwidth Product*	f⊤	_	250	_	MHz	$V_{CE} = 10V, I_{E} = -5mA,$ f = 100MHz


^{*} Transistor - For Reference Only

Typical Curves – DDTC114TKA







Ordering Information (Note 4 & 5)

Device	Packaging	Shipping
DDTC113TKA-7-F	SC-59	3000/Tape & Reel
DDTC123TKA-7-F	SC-59	3000/Tape & Reel
DDTC143TKA-7-F	SC-59	3000/Tape & Reel
DDTC114TKA-7-F	SC-59	3000/Tape & Reel
DDTC124TKA-7-F	SC-59	3000/Tape & Reel
DDTC144TKA-7-F	SC-59	3000/Tape & Reel
DDTC115TKA-7-F	SC-59	3000/Tape & Reel
DDTC125TKA-7-F	SC-59	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

XXX = Product Type Marking Code, See Table on Page 1

YM = Date Code Marking Y = Year ex: T = 2006

M = Month ex: 9 = September

Date Code Key

Date Code No												
Year	2002	2003	200	4 20	05 2	006	2007	2008	2009	2010	2011	2012
Code	N	Р	R	9	6	Т	U	٧	W	Χ	Υ	Z
Month	Jan	Feb	Mar	Apr	May	Jun	Ju	l Aug) Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.