

BUL416

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALES TYPE
- n NPN TRANSISTOR
- n HIGH VOLTAGE CAPABILITY
- n VERY HIGH SWITCHING SPEED
- n FULLY CHARACTERISEZ AT 125 °C
- n LOW SPREAD OF DYNAMIC PARAMETERS

APPLICATIONS

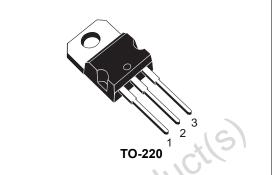
- ELECTRONIC BALLAST FOR FLUORESCENT LIGHTING
- n SWITCH MODE POWER SUPPLIES

DESCRIPTION

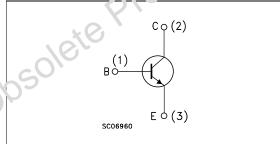
The device is manufactured using high voltage Multi-Epitaxial Mesa technology for cost-effective high performance. It uses a Hollow Emitter structure to enhance switching speeds.

The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

Table 1: Order Codes


Part NumberMarkingPackagePackagingBUL416A
or (#)
BUL416BTO-220Tube

See:note on page 2


Table 2. A Seconde Maximum Ratings

Cymuul	Parameter	Value	Unit	
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1600	V	
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	800	V	
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V	
۱ _C	Collector Current	6	Α	
I _{CM}	Collector Peak Current (t _p < 5ms)	9	А	
Ι _Β	Base Current	5	Α	
I _{BM}	Base Peak Current (t _p < 5ms)	8	А	
P _{tot}	Total Dissipation at $T_{\rm C}$ = 25 °C	110	W	
T _{stg}	Storage Temperature	-65 to 150	°C	
January 200	5	Rev. 3	1	

Figure 1: Package

Figure 2: Internal Schenatic Diagram

BUL416

Symbol	Parameter	Value	Unit
Τ _J	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

R _{thj-case}	Thermal Resistance Junction-Case	Max	1.14	°C/W	
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W	I

Table 4: Electrical Characteristics ($T_{case} = 25 \text{ }^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current	V _{CE} = 1600 V				100	μA
	(V _{BE} =0 V)	V _{CE} = 1600 V	T _j = 125 °C			500	μA
I _{CEO}	Collector Cut-off Current	V _{CE} = 800 V				250	μA
	$(I_{B} = 0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 100 mA	L = 25 mH	800			V
	(I _B = 0)					*	יק
V _{EBO}	Emitter-Base Voltage	I _E = 10 mA		9		5	V
	$(I_{\rm C}=0)$				λ		
V _{CE(sat)} *	Collector-Emitter	I _C = 2 A	I _B = 0.4 A	~	<u> </u>	1.5	V
	Saturation Voltage	I _C = 4 A	I _B = 1.33 A	$O_{\mathcal{N}}$		3	V
V _{BE(sat)} *	Base-Emitter Saturation	I _C = 2 A	I _B = 0.4 A			1.2	V
	Voltage	I _C = 4 A	I _B = 1.33 A			1.5	V
h _{FE} *	DC Current Gain	I _C = 10 mA	V _{CE} = 5 V	10			
		I _C = 0.7 A	$V_{CE} = 5 V$				
		Group A		12		27	
		Group B		25		40	
	INDUCTIVE LOAD	I _C = 3 A	I _{B1} = 1 A				
t _s	Storage Time	$V_{BE(off)} = -5 V$	R_{BB} = 0 Ω		2.3		μs
t _f	Fall Time	V _{clamp} = 200 V	L = 200 µH		650		ns
		(see figure 12)					
	INDUCTIVE LOAD	I _C = 3 A	I _{B1} = 1 A				
t _s	Storage Time	V _{BE(off)} = -5 V	R_{BB} = 0 Ω		3		μs
t _f	Fall Time	$V_{clamp} = 200 V$	L = 200 µH		680		ns
	9	T _i = 100 °C	(see figure 12)				

* Pulsed: Pulsed duration = 300 μ s, duty cycle \leq 1.5 %.

Note: Product is pre-selected in DC current gain (Group A and Group B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery datails.

Figure 3: Safe Operating Area

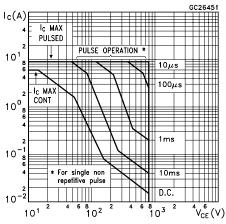


Figure 4: DC Current Gain

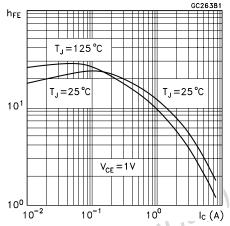
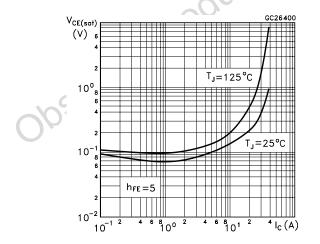
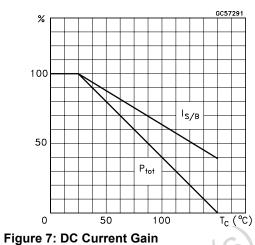
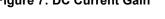





Figure 5: Collector-Emitter Saturation Voltage

Figure 6: Derating Curve

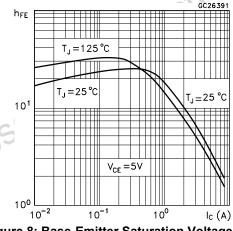
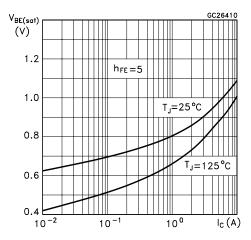



Figure 8: Base-Emitter Saturation Voltage

3/8

Figure 9: Inductive Load Fall Time

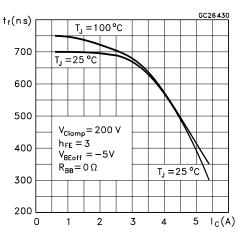
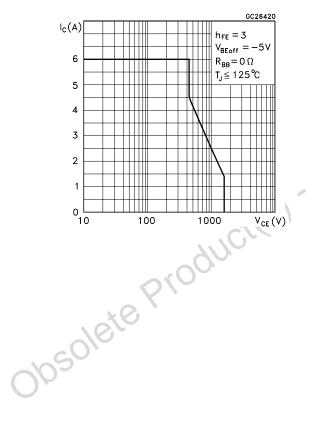
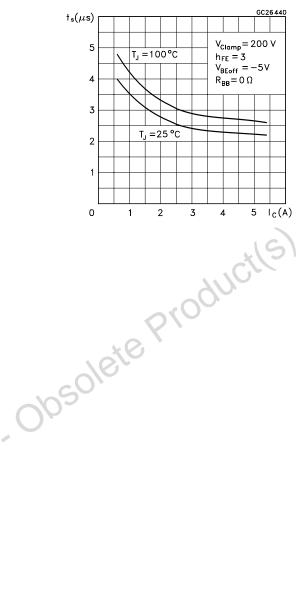
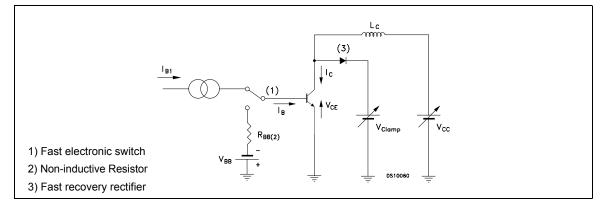




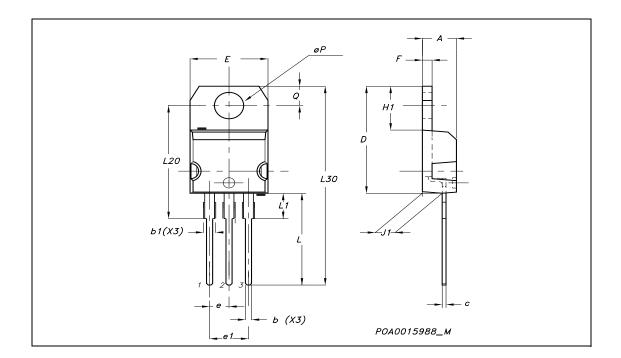
Figure 10: Reverse Biased SOA



57.

4/8

Figure 12: Inductive Load Switching Test Circuit



Obsolete Product(s). Obsolete Product(s)

DIM	mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øP	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	

Table 5:

Version	Release Date	Change Designator
14-Jan-2004	1	First Release.
09-Sep-2004	2	Second Release.
26-Jan-2005	3	Third Release.

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
