

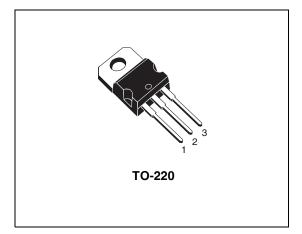
BUL3P5

MEDIUM VOLTAGE FAST-SWITCHING PNP POWER TRANSISTOR

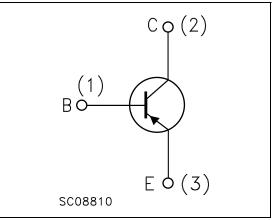
Features

- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

Applications


ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

Description


The BUL3P5 is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and medium voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The device is expressly designed for a new solution to be used in compact fluorescent lamps, H.F. ballast voltage FED where it is coupled with the BUL3N7, its complementary NPN transistor.

Internal Schematic Diagram

Order Codes

Part Number	Marking	Package	Packing
BUL3P5	BUL3P5	TO-220	TUBE

	re	ev.2
December 2005	1/	/10
	www.st.c	com

1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	-500	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	-400	V
V _{EBO}	Emitter-Base Voltage ($I_c = 0$, $I_B = -0.75$ A, $t_p < 100$ ms, $T_j < 150$ °C)	V _{(BR)EBO}	V
Ι _C	Collector Current	-3	А
I _{CM}	Collector Peak Current (t _P < 5ms)	-6	А
Ι _Β	Base Current	-1.5	А
I _{BM}	Base Peak Current (t _P < 5ms)	-3	А
P _{TOT}	Total dissipation at $T_c = 25^{\circ}C$	60	W
T _{stg}	Storage Temperature	-65 to 150	°C
Т _Ј	Max. Operating Junction Temperature	150	°C

Table 1. Absolute Maximum Rating

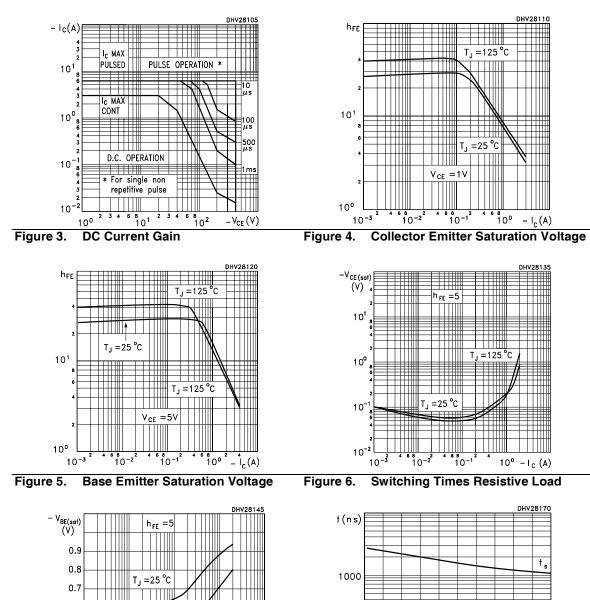
Table 2. Thermal Data

Symbol	Parameter	Value	Unit
R _{thJ-case}	Thermal Resistance Junction-Case Max	2.08	°C/W
R _{thJ-amb}	Thermal Resistance Junction-Ambient Max	62.5	°C/W

2 Electrical Characteristics

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = -500 V V _{CE} = -500 V	T _C = 125°C			-0.1 -0.5	mA mA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_{\rm C}=0)$	l _E = -10 mA		-5		-10	V
V _{CEO(sus)} Note: 1	Collector-Emitter Sustaining Voltage (I _B = 0)	l _C = 100 mA		-400			V
V _{CE(sat)} Note: 1	Collector-Emitter Saturation Voltage	I _C = -0.7 A I _C = -1 A	2			-0.5 -0.5	V V
V _{BE(sat)} Note: 1	Base-Emitter Saturation Voltage	I _C = -0.5A I _C = -1A I _C = -2A	I _B = -0.2 A			-1.1 -1.2 -1.3	V V V
h _{FE}	DC Current Gain	I _C = -10 mA I _C = -0.7A I _C = -2A	V _{CE} = -5 V	10 18 4		34	
t _r t _s t _f	RESISTIVE LOAD Rise Time Storage Time Fall Time	I _C = -0.7 A I _{B1} = -0.14 A T _p = 30 μs			100 2.4 80		ns μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = -1 A$ $V_{BE(off)} = 5 V$ L = 1 mH			450 70		ns ns

Table 3.Electrical Characteristics ($T_{CASE} = 25^{\circ}C$; unless otherwise specified)


Note: 1 Pulsed duration = $300 \ \mu s$, duty cycle $\leq 1.5\%$.

2.1 Typical Characteristics

Figure 2. DC Current Gain

100

10

0.5

0.7

0.9

0.6 0.5

0.4

0.3

0.2

 10^{-3}

 10^{-2}

 10^{-1}

T_J =125 °C

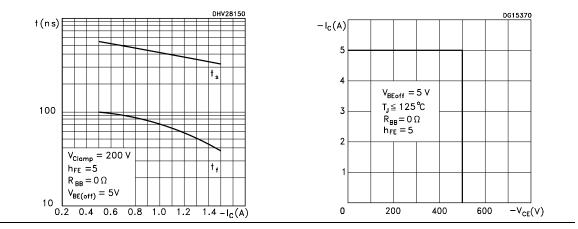
10⁰

– I_c (A)

t_f

 $V_{Clamp} = 250 V$

 $V_{BE(off)} = 5V$


 $1.3 - I_{C}(A)$

 $h_{FE} = 5$ $I_{bon} = - I_{boff}$

1.1

Figure 7. Switching Times Inductive Load

Figure 8. Reverse Bised SOA

3 Test Circuits

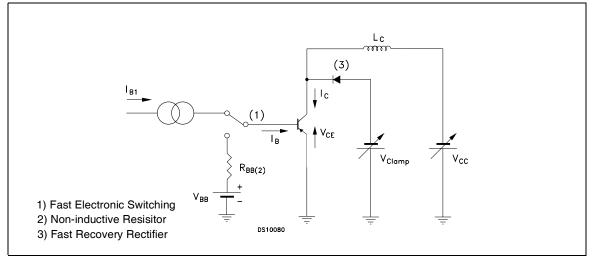
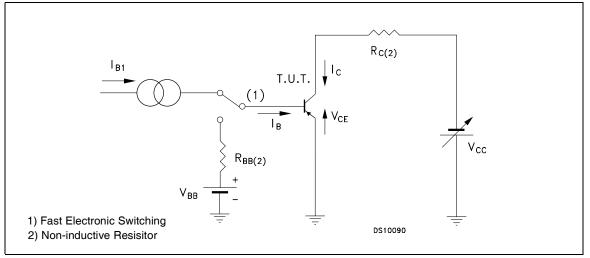



Figure 10. Resistive Load Switching Test Circuits

57

4 Package Mechanical Data

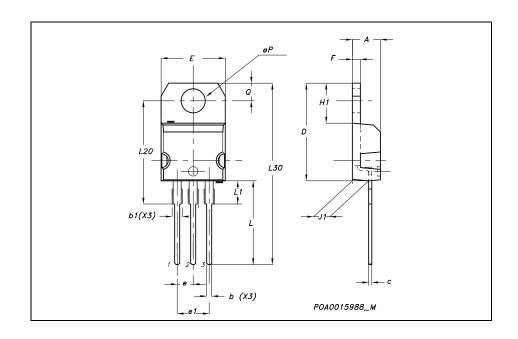
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM. А b b1 С D Е е e1 F H1 J1 L L1 L20 L30

øΡ

Q

	mm.			inch		
MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
4.40		4.60	0.173		0.181	
0.61		0.88	0.024		0.034	
1.15		1.70	0.045		0.066	
0.49		0.70	0.019		0.027	
15.25		15.75	0.60		0.620	
10		10.40	0.393		0.409	
2.40		2.70	0.094		0.106	
4.95		5.15	0.194		0.202	
1.23		1.32	0.048		0.052	
6.20		6.60	0.244		0.256	
2.40		2.72	0.094		0.107	
13		14	0.511		0.551	
3.50		3.93	0.137		0.154	
	16.40			0.645	1	


0.147

0.104

1.137

0.151

0.116

3.85

2.95

28.90

3.75

2.65

5 Revision History

Date	Revision	Changes
09-Dec-2005	2	Inserted curves

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

10/10

