

TN4033A

PNP General Purpose Amplifier

This device is designed for general purpose amplifier and switching applications at currents to 500 mA and collector voltages up to 70V. Sourced from Process 67.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V_{CEO}	Collector-Emitter Voltage	80	V	
V _{CBO}	Collector-Base Voltage	80	V	
V _{EBO}	Emitter-Base Voltage	5.0	V	
I _C	Collector Current - Continuous	1.0	A	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- NOTES:

 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

 3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics

TA = 25°C unless otherwise noted

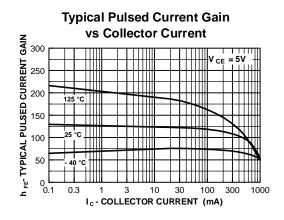
Symbol	Characteristic	Max	Units
		TN4033A	-
P_D	Total Device Dissipation	1.0	W
	Derate above 25°C	8.0	mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	50	°C/W

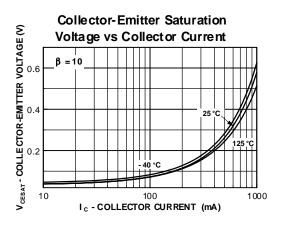
PNP General Purpose Amplifier (continued)

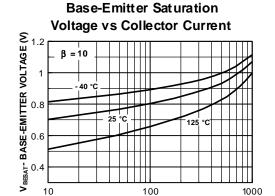
		~ :	_	
LIACTE	\sim	('hai	こつへもへ	rictioc
Electri	uai	GHAI	aute	เมอเเษอ

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Sustaining Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	80		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	80		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
I _{CBO}	Collector-Cutoff Current	$V_{CB} = 60 \text{ V}, I_{E} = 0$		50	nA
_		$V_{CB} = 60 \text{ V}, I_E = 0, T_A = 150^{\circ}\text{C}$		50	μΑ
I _{EBO}	Emitter-Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		10	μΑ
ON CHAR	ACTERISTICS				
h _{FE}	DC Current Gain	$I_C = 100 \mu\text{A}, V_{CE} = 5.0 \text{V}$	75		
. 1 6		$I_{C}=100\text{mA}, V_{CE}=5.0\text{V}, T_{A}=-55^{\circ}\text{C}$	40		
		$I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$	100	300	
		$I_C = 500 \text{ mA}, V_{CE} = 5.0 \text{ V}$	70		
		$I_C = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V}$	25		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		0.15	V
		$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		0.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		0.9	V
$V_{BE(on)}$	Base-Emitter On Voltage	$I_C = 500 \text{ mA}, V_{CE} = 0.5 \text{ V}$		1.1	V
SMALL SI	GNAL CHARACTERISTICS				
C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$		20	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$		110	pF
h _{fe}	Small-Signal Current Gain	$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	1.0	4.0	
SWITCHI	NG CHARACTERISTICS				
t _s	Storage Time	$I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$		350	ns
ton	Turn-On Time	I _C = 500 mA, I _{B1} = 50 mA		100	ns

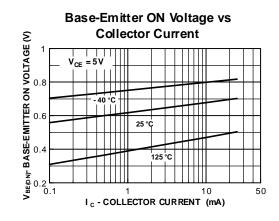

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%

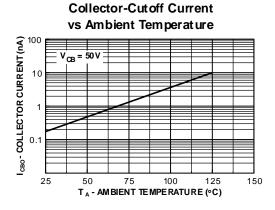

NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

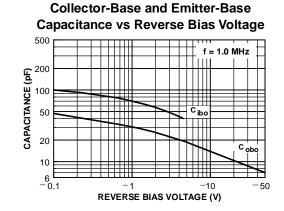

PNP General Purpose Amplifier

(continued)

Typical Characteristics

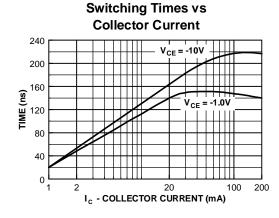


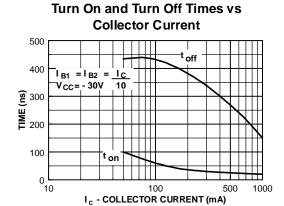



100

I c - COLLECTOR CURRENT (mA)

1000

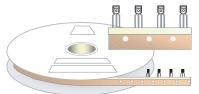





PNP General Purpose Amplifier

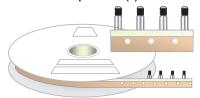
(continued)

Typical Characteristics (continued)



©2000 Fairchild Semiconductor International

TO-226AE Tape and Reel Data, continued


TO-226AE Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

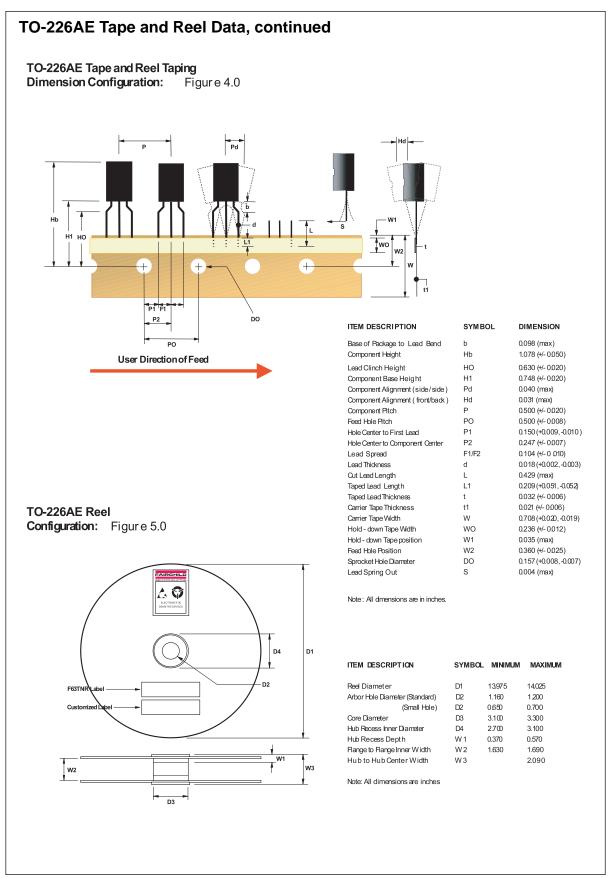
Style "A" D26Z, D70Z (s/h)


Machine Option "E"(J)

Style "E" D27Z, D71Z (s/h)

TO-226AE Radial Ammo Packaging

Configuration: Figure 3.0

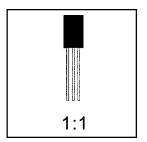


FIRST WIRE OFF IS EMITTER (ON PKG. 92)
ADHESIVE TAPE IS ON THE TOP SIDE
FLAT OF TRANSISTOR IS ON BOTTOM

ORDER STYLE
D75Z (P)

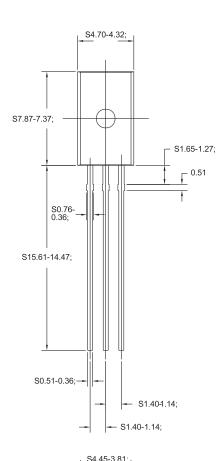
FIRST WIRE OFF IS COLLECTOR ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP

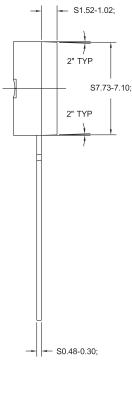
October 1999, Rev. A1


October 1999, Rev. A1

TO-226AE Package Dimensions

TO-226AE (FS PKG Code 95, 99)





Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.300

For leadformed option ordering, refer to Tape & Reel data information.

S2.41-2.13; -

October 1999, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. G