ТІРЗЗА, ТІРЗЗС

NPN High-Power Transistors

Designed for general-purpose power amplifier and switching applications.

Features

- ESD Ratings: Machine Model, C; > 400 V Human Body Model, 3B; > 8000 V
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Pb–Free Packages are Available*

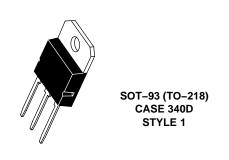
MAXIMUM RATINGS

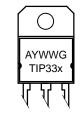
Rating		Symbol	Value	Unit
Collector – Emitter Voltage	TIP33A TIP33C	V _{CEO}	60 100	Vdc
Collector – Base Voltage	TIP33A TIP33C	V _{CBO}	60 100	Vdc
Emitter – Base Voltage		V _{EBO}	5.0	Vdc
Collector Current – Continuo – Peak (No		Ι _C	10 15	Adc Apk
Base Current – Continuous		Ι _Β	3.0	Adc
Total Device Dissipation @ T _C = Derate above 25°C	= 25°C	P _D	80 0.64	Watts W/°C
Operating and Storage Junction Temperature Range	า	T _J , T _{stg}	−65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.56	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	35.7	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.


ON Semiconductor®

http://onsemi.com

10 AMPERE NPN SILICON POWER TRANSISTORS 60 & 100 VOLT, 80 WATTS

MARKING DIAGRAM

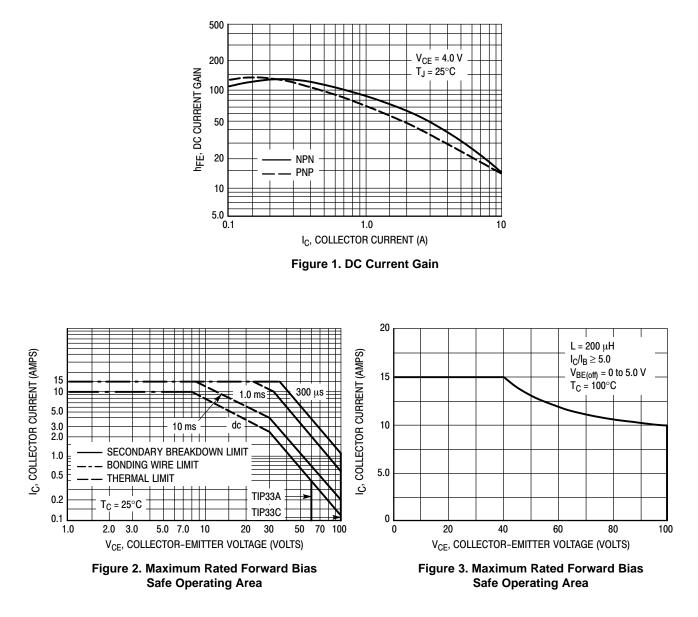
A	= Assembly Location
Υ	= Year
WW	= Work Week
TIP33x	= Device Code
х	= A or C
G	= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
TIP33A	TO-218	30 Units / Rail
TIP33AG	TO–218 (Pb–Free)	30 Units / Rail
TIP33C	TO-218	30 Units / Rail
TIP33CG	TO–218 (Pb–Free)	30 Units / Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2005 September, 2005 – Rev. 3

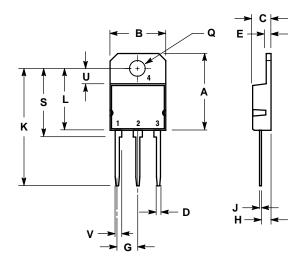

TIP33A, TIP33C

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		
Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 30 \text{ mA}, I_B = 0)$	TIP33A TIP33C	V _{CEO(sus)}	60 100		Vdc
Collector–Emitter Cutoff Current ($V_{CE} = 30 \text{ V}, I_B = 0$) ($V_{CE} = 60 \text{ V}, I_B = 0$)	TIP33A TIP33C	I _{CEO}	-	0.7	mA
Collector–Emitter Cutoff Current (V_{CE} = Rated V_{CEO} , V_{EB} = 0)		I _{CES}	-	0.4	mA
Emitter-Base Cutoff Current ($V_{EB} = 5.0 \text{ V}, I_C = 0$)		I _{EBO}	-	1.0	mA
ON CHARACTERISTICS (Note 2)					
DC Current Gain (I _C = 1.0 A, V _{CE} = 4.0 V) (I _C = 3.0 A, V _{CE} = 4.0 V)		h _{FE}	40 20	_ 100	_
Collector–Emitter Saturation Voltage ($I_C = 3.0 \text{ A}, I_B = 0.3 \text{ A}$) ($I_C = 10 \text{ A}, I_B = 2.5 \text{ A}$)		V _{CE(sat)}		1.0 4.0	Vdc
Base-Emitter On Voltage ($I_C = 3.0 \text{ A}, V_{CE} = 4.0 \text{ V}$) ($I_C = 10 \text{ A}, V_{CE} = 4.0 \text{ V}$)		V _{BE(on)}		1.6 3.0	Vdc
DYNAMIC CHARACTERISTICS					•
Small–Signal Current Gain ($I_C = 0.5 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$)		h _{fe}	20	_	-
Current–Gain — Bandwidth Product ($I_C = 0.5 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ MHz}$)		f _T	3.0	_	MHz

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

FORWARD BIAS


The Forward Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during forward bias. The data is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10%, and must be derated thermally for $T_C > 25^{\circ}C$.

REVERSE BIAS

The Reverse Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during reverse biased turn–off. This rating is verified under clamped conditions so the device is never subjected to an avalanche mode.

PACKAGE DIMENSIONS

SOT-93 (TO-218) CASE 340D-02 ISSUE E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		20.35		0.801
В	14.70	15.20	0.579	0.598
С	4.70	4.90	0.185	0.193
D	1.10	1.30	0.043	0.051
Е	1.17	1.37	0.046	0.054
G	5.40	5.55	0.213	0.219
Η	2.00	3.00	0.079	0.118
J	0.50	0.78	0.020	0.031
K	31.00 REF		1.220 REF	
L		16.20		0.638
Q	4.00	4.10	0.158	0.161
S	17.80	18.20	0.701	0.717
U	4.00	REF 0.157 REF		7 REF
۷	1.75	75 REF 0.069)69

STYLE 1:

PIN 1. BASE 2. COLLECTOR 3 FMITTER COLLECTOR 4.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.