BUF420AW

## HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- LOW BASE-DRIVE REQUIREMENTS


## APPLICATIONS:

- SWITCH MODE POWER SUPPLIES
- MOTOR CONTROL


## DESCRIPTION

The BUF420AW is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capacity. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.
The BUF series is designed for use in high-frequency power supplies and motor control applications.


## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CEV}}$ | Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)$ | 1000 | V |
| $\mathrm{~V}_{\mathrm{CEO}}$ | Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$ | 450 | V |
| $\mathrm{~V}_{\mathrm{EBO}}$ | Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$ | 7 | V |
| $\mathrm{I}_{\mathrm{C}}$ | Collector Current | 30 | A |
| $\mathrm{I}_{\mathrm{CM}}$ | Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$ | 60 | A |
| $\mathrm{I}_{\mathrm{B}}$ | Base Current | 6 | A |
| $\mathrm{I}_{\mathrm{BM}}$ | Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$ | 9 | A |
| $\mathrm{P}_{\text {tot }}$ | Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 200 | W |
| $\mathrm{~T}_{\text {stg }}$ | Storage Temperature | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | Max. Operating Junction Temperature | 150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL DATA

| $\mathrm{R}_{\mathrm{th} j \text {-case }}$ | Thermal Resistance Junction-Case | Max | 0.63 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Icer | Collector Cut-off Current ( $\mathrm{R}_{\mathrm{BE}}=5 \Omega$ ) | $\begin{aligned} & V_{C E}=1000 \mathrm{~V} \\ & V_{C E}=1000 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} 0.2 \\ 1 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Icev | Collector Cut-off Current ( $\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$ ) | $\begin{aligned} & V_{C E}=1000 \mathrm{~V} \\ & V_{C E}=1000 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} 0.2 \\ 1 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Iebo | Emitter Cut-off Current $\left(I_{C}=0\right)$ | $\mathrm{V}_{\mathrm{Eb}}=5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{V}_{\text {CEO }}$ (sus)* | Collector-Emitter Sustaining Voltage $\left(I_{B}=0\right)$ | $\mathrm{IC}=200 \mathrm{~mA}$ | $\mathrm{L}=25 \mathrm{mH}$ | 450 |  |  | V |
| Vebo | Emitter Base Voltage $(\mathrm{Ic}=0)$ | $\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$ |  | 7 |  |  | V |
| $\mathrm{V}_{\mathrm{CE} \text { (sat)* }}$ | Collector-Emitter Saturation Voltage | $\begin{aligned} & \mathrm{I} \mathrm{C}=10 \mathrm{~A} \\ & \mathrm{IC}=10 \mathrm{~A} \\ & \mathrm{IC}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \end{aligned}$ | $\begin{array}{ll} \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$ |  | $\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$ | $\begin{gathered} 2.8 \\ 2 \end{gathered}$ | $\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$ |
| $\mathrm{V}_{\mathrm{BE}(\text { sat) }}{ }^{*}$ | Base-Emitter Saturation Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{IC}=10 \mathrm{~A} \\ & \mathrm{IC}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \end{aligned}$ | $\begin{array}{ll} \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} & \\ \end{array}$ |  | $\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$ |
| dic/dt | Rate of rise on-state Collector Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=6 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{C}}=0 \quad \mathrm{t}_{\mathrm{p}}=3 \mu \mathrm{~s} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} 70 \\ 150 \end{gathered}$ | 100 |  | $\mathrm{A} / \mu \mathrm{s}$ <br> A/ $\mu \mathrm{s}$ <br> A/ $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {CE }}(3 \mu \mathrm{~s})$ | Collector-Emitter Dynamic Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{C}}=60 \Omega \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |  | 2.1 | 8 | V |
| $\mathrm{V}_{\text {CE }}(5 \mu \mathrm{~s})$ | Collector-Emitter Dynamic Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{C}}=60 \Omega \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |  | 1.1 | 4 | $\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time <br> Fall Time <br> Cross Over Time | $\begin{aligned} & \mathrm{I} \mathrm{C}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \end{aligned}$ |  | $\begin{gathered} 1 \\ 0.05 \\ 0.08 \end{gathered}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time <br> Fall Time <br> Cross Over Time | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |  |  | $\begin{gathered} 2 \\ 0.1 \\ 0.18 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| $\mathrm{V}_{\text {cew }}$ | Maximum Collector Emitter Voltage without Snubber | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | 500 |  |  | V |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time <br> Fall Time Cross Over Time | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\text {BB }}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.15 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \end{aligned}$ |  | $\begin{gathered} 1.5 \\ 0.04 \\ 0.07 \end{gathered}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |

ELECTRICAL CHARACTERISTICS (continued)

| Symbol | Parameter | Test Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{tf}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time Fall Time Cross Over Time | $\begin{aligned} & \mathrm{I} \mathrm{C}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.15 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$ |  |  | $\begin{gathered} 3 \\ 0.15 \\ 0.25 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| $\mathrm{V}_{\text {cew }}$ | Maximum Collector Emitter Voltage without Snubber | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=0 \\ & \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.15 \Omega \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$ | 500 |  |  | V |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time Fall Time Cross Over Time | $\begin{aligned} & \mathrm{IC}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.12 \mathrm{mH} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=4 \mathrm{~A} \end{aligned}$ |  | $\begin{gathered} 2.2 \\ 0.06 \\ 0.12 \end{gathered}$ |  | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$ | INDUCTIVE LOAD <br> Storage Time <br> Fall Time Cross Over Time | $\begin{aligned} & \mathrm{I} \mathrm{C}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.12 \mathrm{mH} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=4 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ |  |  | $\begin{gathered} 3.5 \\ 0.12 \\ 0.3 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| $\mathrm{V}_{\text {CEW }}$ | Maximum Collector Emitter Voltage without Snubber | $\begin{aligned} & \mathrm{I}_{\mathrm{CWoff}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~L}_{2}=0.12 \mathrm{mH} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{BB}}=0.6 \Omega \\ & \mathrm{I}_{\mathrm{B} 1}=6 \mathrm{~A} \end{aligned}$ | 400 |  |  | V |

DC Current Gain


Collector Emitter Saturation Voltage


Forward Biased Safe Operating Area


DC Current Gain


Base Emitter Saturation Voltage


Reverse Biased Safe Operating Area


47

Storage Time Versus Pulse Time.


Figure 1: Inductive Load Switching Test Circuit.


Turn-on Switching Test Waveforms.


Turn-off Switching Test Waveforms
(inductive load).


| TO-247 MECHANICAL DATA |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  | mIN. | TYP. | MAX. | MIN. | TYP. | MAX. |  |  |
|  | 4.7 |  | 5.3 | 0.185 |  | 0.209 |  |  |
|  | 2.2 |  | 2.6 | 0.087 |  | 0.102 |  |  |
|  | 0.4 |  | 0.8 | 0.016 |  | 0.031 |  |  |
|  | 1 |  | 1.4 | 0.039 |  | 0.055 |  |  |
|  | 2 |  | 2.4 | 0.079 |  | 0.094 |  |  |
| F4 | 3 |  | 3.4 | 0.118 |  | 0.134 |  |  |
| G |  | 10.9 |  |  | 0.429 |  |  |  |
| H | 15.3 |  | 15.9 | 0.602 |  | 0.626 |  |  |
| L | 19.7 |  | 20.3 | 0.776 |  | 0.779 |  |  |
| L3 | 14.2 |  | 14.8 | 0.559 |  | 0.582 |  |  |
| L4 |  | 34.6 |  |  | 1.362 |  |  |  |
| L5 |  | 5.5 |  | 3 | 0.079 |  |  |  |
| M | 2 |  |  |  | 0.217 |  |  |  |



57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

## http://www.st.com

