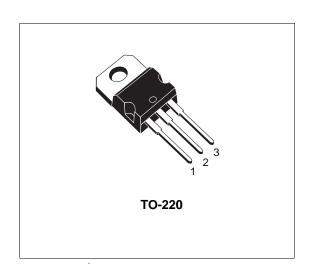
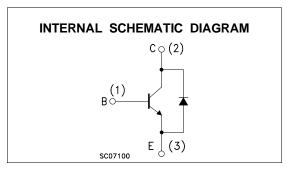


BUL381D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- LARGE RBSOA
- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE


APPLICATIONS


- ELECTRONIC TRANSFORMERS FOR HALOGEN LAMPS
- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- SWITCH MODE POWER SUPPLIES

The BUL381D is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.

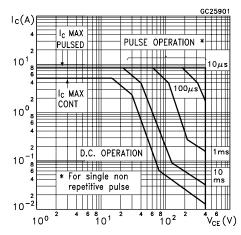
The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

ABSOLUTE MAXIMUM RATINGS

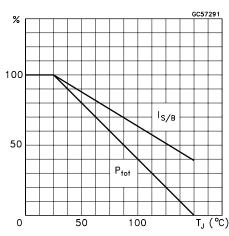
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	800	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	9	V
Ic	Collector Current	5	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	8	Α
I _B	Base Current	2	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α
P _{tot}	Total Dissipation at T _c = 25 °C	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

July 2003 1/6

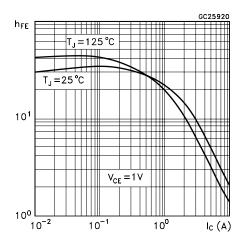
THERMAL DATA

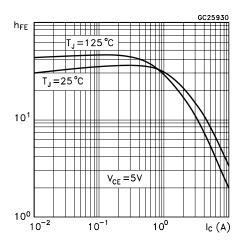

R _{thj-case}	Thermal Resistance Junction-Case	Max	1.78	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

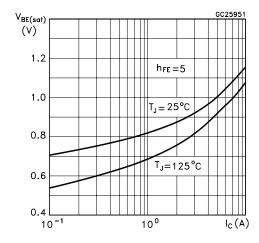

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 800 V V _{CE} = 800 V T _j = 125 °C			100 500	μA μA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 400 V			250	μΑ
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA L = 25 mH	400			V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA	9			>
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = 1 A$ $I_B = 0.2 A$ $I_C = 2 A$ $I_B = 0.4 A$ $I_C = 3 A$ $I_B = 0.75 A$			0.5 0.7 1.1	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$ $I_C = 2 \text{ A}$ $I_B = 0.4 \text{ A}$			1.1 1.2	V V
h _{FE} *	DC Current Gain	$I_C = 2 A$ $V_{CE} = 5 V$ $I_C = 10 \text{ mA}$ $V_{CE} = 5 V$	8 10			
t _s	RESISTIVE LOAD Storage Time Fall Time	$I_{C} = 2 \text{ A}$ $V_{CC} = 250 \text{ V}$ $t_{p} = 30 \mu\text{s}$ $I_{B1} = -I_{B2} = 0.4 \text{ A}$	1.5		2.5 0.8	μs μs
t _s	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 2 \ A & I_{B1} = 0.4 \ A \\ V_{BE(off)} = -5 \ V & R_{BB} = 0 \ \Omega \\ V_{CL} = 250 \ V & L = 200 \ \mu H \\ T_{j} = 125 \ ^{\circ}C & \end{array}$		1.3 100		μs ns
V _f	Diode Forward Voltage	1			2.5	V

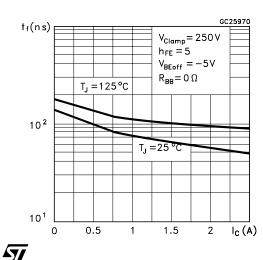
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

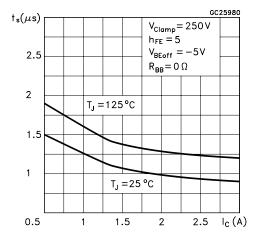

Safe Operating Area

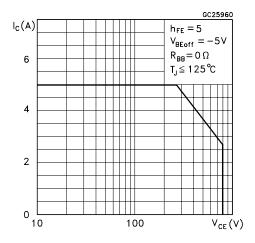

Derating Curve

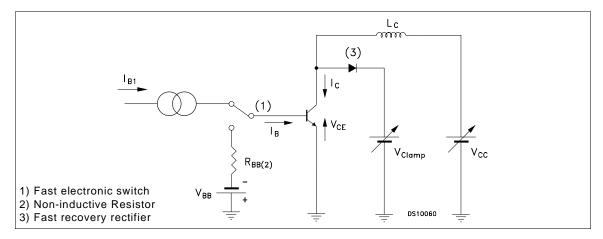
DC Current Gain

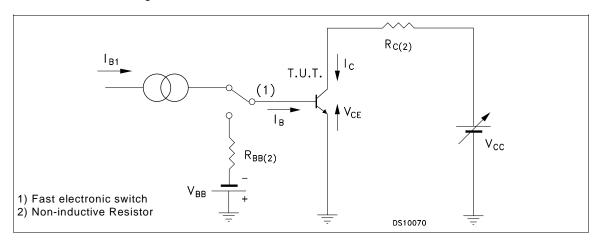

DC Current Gain


Collector Emitter Saturation Voltage

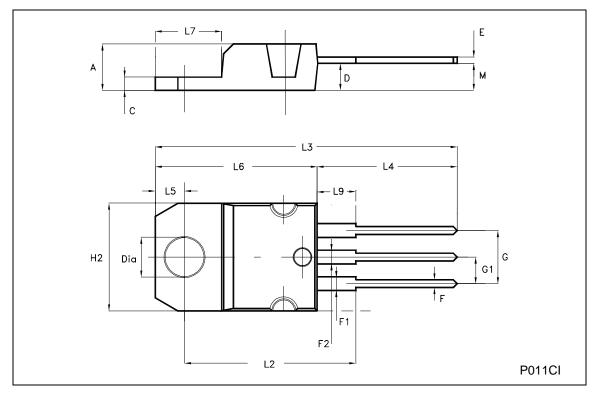

Base Emitter Saturation Voltage


Inductive Fall Time


Inductive Storage Time


Reverse Biased SOA

Inductive Load Switching Test Circuit



Resistive Load Switching Test Ciurcuit

TO-220 MECHANICAL DATA

DIM.	mm		inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
M		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com