MJL3281A (NPN) MJL1302A (PNP)

Preferred Devices

Complementary Bipolar Power Transistors

Features

- Exceptional Safe Operating Area
- NPN/PNP Gain Matching within 10% from 50 mA to 5 A
- Excellent Gain Linearity
- High BVCEO
- High Frequency
- Pb-Free Packages are Available

Benefits

- Reliable Performance at Higher Powers
- Symmetrical Characteristics in Complementary Configurations
- Accurate Reproduction of Input Signal
- Greater Dynamic Range
- High Amplifier Bandwith

Applications

- High-End Consumer Audio Products
 - Home Amplifiers
 - ♦Home Receivers
- Professional Audio Amplifiers
 - Theater and Stadium Sound Systems
 - Public Address Systems (PAs)

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

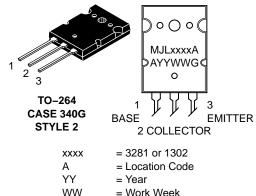
Symbol	Value	Unit
V _{CEO}	260	Vdc
V _{CBO}	260	Vdc
V _{EBO}	5.0	Vdc
V _{CEX}	260	Vdc
Ι _C	15 25	Adc
Ι _Β	1.5	Adc
P _D	200 1.43	Watts W/°C
T _J , T _{stg}	– 65 to +150	°C
	VCEO VCBO VEBO VCEX IC IB PD	V 260 V 260 V 260 V 5.0 V 260 Ic 15 IB 1.5 PD 200 1.43 T,J, T, Stg

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.625	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle < 10%.



ON Semiconductor®

http://onsemi.com

15 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS **260 VOLTS 200 WATTS**

MARKING DIAGRAM

= Pb-Free Package

ORDERING INFORMATION

G

Device	Package	Shipping
MJL3281A	TO-264	25 Units/Rail
MJL3281AG	TO–264 (Pb–Free)	25 Units/Rail
MJL1302A	TO-264	25 Units/Rail
MJL1302AG	TO–264 (Pb–Free)	25 Units/Rail

Preferred devices are recommended choices for future use and best overall value

Downloaded from Elcodis.com electronic components distributor

MJL3281A (NPN) MJL1302A (PNP)

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	· · · ·			
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	260	_	Vdc
Collector Cutoff Current ($V_{CB} = 260 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	50	μAdc
Emitter Cutoff Current ($V_{EB} = 5 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	5	μAdc
SECOND BREAKDOWN				•
Second Breakdown Collector with Base Forward Biased $(V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$ $(V_{CE} = 100 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$	I _{S/b}	4 1		Adc
ON CHARACTERISTICS				
	h _{FE}	75 75 75 75 45	150 150 150 150 -	
Collector–Emitter Saturation Voltage $(I_C = 10 \text{ Adc}, I_B = 1 \text{ Adc})$	V _{CE(sat)}	_	3	Vdc
DYNAMIC CHARACTERISTICS				-
Current–Gain – Bandwidth Product (I _C = 1 Adc, V _{CE} = 5 Vdc, f _{test} = 1 MHz)	f _T	30	_	MHz
Output Capacitance (V_{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	_	600	pF

MJL3281A (NPN) MJL1302A (PNP)

TYPICAL CHARACTERISTICS

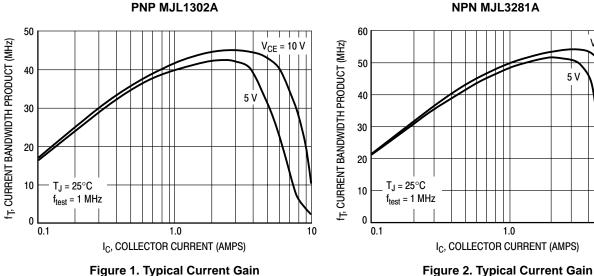
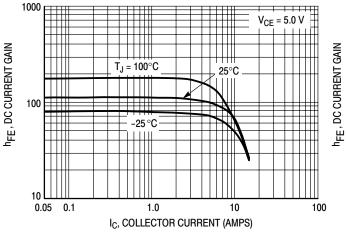
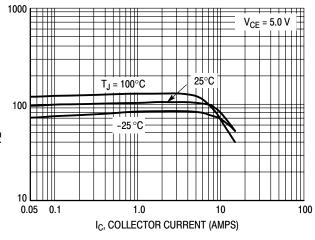
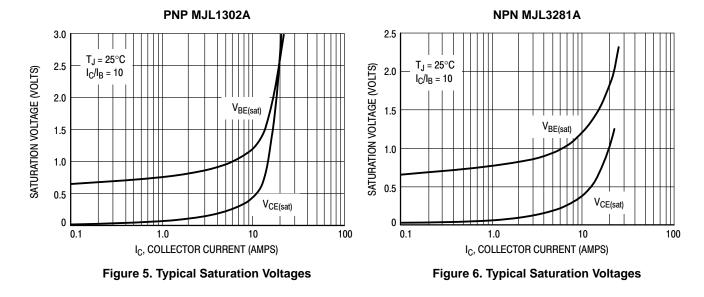



Figure 1. Typical Current Gain Bandwidth Product




Bandwidth Product

V_{CE} = 10 V

10

http://onsemi.com

MJL3281A (NPN) MJL1302A (PNP)

TYPICAL CHARACTERISTICS

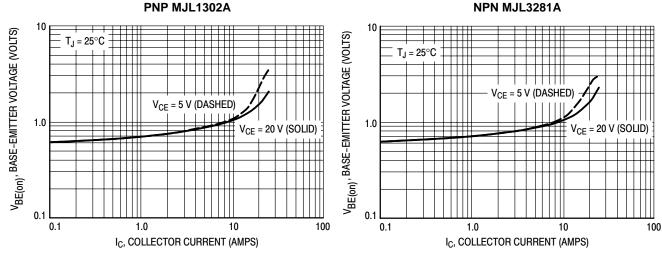


Figure 7. Typical Base–Emitter Voltage

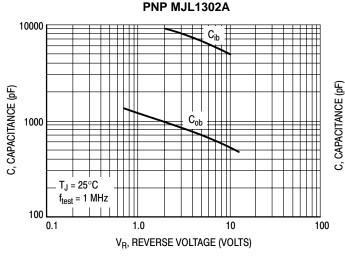


Figure 9. MJL1302A Typical Capacitance

10 ms

250 ms

100

10

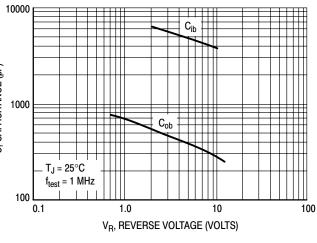


Figure 10. MJL3281A Typical Capacitance

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. At high case temperatures,

able depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second break-down.

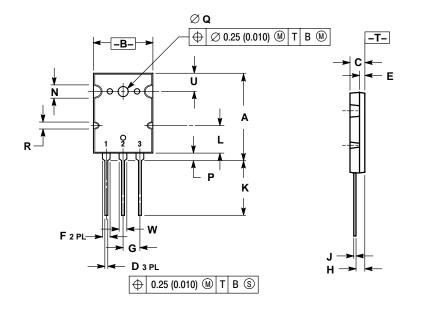
V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 11. Active Region Safe Operating Area

1 sec

1000

100

10


1.0

0.1

I_C, Collector Current (AMPS)

PACKAGE DIMENSIONS

TO-3PBL (TO-264) CASE 340G-02 ISSUE J

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982

ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	28.0	29.0	1.102	1.142	
в	19.3	20.3	0.760	0.800	
С	4.7	5.3	0.185	0.209	
D	0.93	1.48	0.037	0.058	
E	1.9	2.1	0.075	0.083	
F	2.2	2.4	0.087	0.102	
G	5.45 BSC		0.215	BSC	
н	2.6	3.0	0.102	0.118	
J	0.43	0.78	0.017	0.031	
κ	17.6	18.8	0.693	0.740	
L	11.2 REF		0.411	REF	
Ν	4.35	REF	0.172	2 REF	
Р	2.2	2.6	0.087	0.102	
Q	3.1	3.5	0.122	0.137	
R	2.25 REF		0.089	REF	
U	6.3 REF		0.248	REF	
w	2.8	3.2	0.110	0.125	

STYLE 2: PIN 1 BASE

2. COLLECTOR

3. EMITTER

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PowerBase is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product costs of any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such application for seale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.