2N6109 and 2N6292 are Preferred Devices # **Complementary Silicon Plastic Power Transistors** These devices are designed for use in general-purpose amplifier and switching applications. #### **Features** • DC Current Gain Specified to 7.0 Amperes • Collector-Emitter Sustaining Voltage - • High Current Gain - Bandwidth Product $$f_T$$ = 4.0 MHz (Min) @ I_C = 500 mAdc - 2N6288, 90, 92 = 10 MHz (Min) @ I_C = 500 mAdc - 2N6107, 09, 11 - TO-220AB Compact Package - Pb-Free Packages are Available* ### MAXIMUM RATINGS (Note 1) | Rating | | Symbol | Value | Unit | |---|--|-----------------------------------|----------------|-----------| | Collector-Emitter Voltage | 2N6111, 2N6288
2N6109
2N6107, 2N6292 | V _{CEO} | 30
50
70 | Vdc | | Collector-Base Voltage | 2N6111, 2N6288
2N6109
2N6107, 2N6292 | V _{CB} | 40
60
80 | Vdc | | Emitter-Base Voltage | | V _{EB} | 5.0 | Vdc | | Collector Current - Contin
- Peak | nuous | I _C | 7.0
10 | Adc | | Base Current | | Ι _Β | 3.0 | Adc | | Total Power Dissipation @ Derate above 25°C | © T _C = 25°C | P _D | 40
0.32 | W
W/°C | | Operating and Storage Ju
Temperature Range | ınction | T _J , T _{stg} | -65 to +150 | °C | ### THERMAL CHARACTERISTICS | Characteristics | Symbol | Max | Unit | |--------------------------------------|-----------------|-------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 3.125 | °C/W | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Indicates JEDEC Registered Data. ## ON Semiconductor® http://onsemi.com # **7 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON** 30 - 50 - 70 VOLTS, 40 WATTS ### **MARKING DIAGRAM** TO-220AB CASE 221A STYLE 1 2N6xxx = Specific Device Code = See Table on Page 4 XXX G = Pb-Free Package Α = Assembly Location = Year = Work Week ### ORDERING INFORMATION See detailed ordering, marking, and shipping information in the package dimensions section on page 4 of this data sheet. Preferred devices are recommended choices for future use and best overall value. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Power Derating # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2) | Characteristic | | Symbol | Min | Max | Unit | |---|--|----------------------|-----------------------|--|--------------| | OFF CHARACTERISTICS | | | | | | | Collector-Emitter Sustaining Voltage (Note 3) $(I_C = 100 \text{ mAdc}, I_B = 0)$ | 2N6111, 2N6288
2N6109
2N6107, 2N6292 | $V_{CEO(sus)}$ | 30
50
70 | -
-
- | Vdc | | Collector Cutoff Current $(V_{CE} = 20 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ | 2N6111, 2N6288
2N6109
2N6107, 2N6292 | I _{CEO} | -
-
- | 1.0
1.0
1.0 | mAdc | | | 2N6111, 2N6288
2N6109
2N6107, 2N6292
2N6111, 2N6288
2N6109
2N6107, 2N6292 | I _{CEX} | -
-
-
- | 100
100
100
2.0
2.0
2.0 | μAdc
mAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | | I _{EBO} | - | 1.0 | mAdc | | ON CHARACTERISTICS (Note 3) | | | | | | | DC Current Gain $ \begin{array}{l} (I_C = 2.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \\ (I_C = 2.5 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \\ (I_C = 3.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \\ (I_C = 7.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \end{array} $ | 2N6107, 2N6292
2N6109
2N6111, 2N6288
All Devices | h _{FE} | 30
30
30
2.3 | 150
150
150
- | - | | Collector-Emitter Saturation Voltage (I _C = 7.0 Adc, I _B = 3.0 Adc) | | V _{CE(sat)} | - | 3.5 | Vdc | | Base-Emitter On Voltage (I _C = 7.0 Adc, V _{CE} = 4.0 Vdc) | | V _{BE(on)} | - | 3.0 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Current Gain — Bandwidth Product (Note 4) $(I_C = 500 \text{ mAdc}, V_{CE} = 4.0 \text{ Vdc}, f_{test} = 1.0 \text{ MHz})$ | 2N6288, 92
2N6107, 09, 11 | f _T | 4.0
10 | -
- | MHz | | Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) | | C _{ob} | - | 250 | pF | | Small-Signal Current Gain (I_C = 0.5 Adc, V_{CE} = 4.0 Vdc, f = 50 kHz | <u></u> | h _{fe} | 20 | _ | - | ^{2.} Indicates JEDEC Registered Data. ^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. ^{4.} $f_T = |h_{fe}| \bullet f_{test}$ $\ensuremath{\mathsf{R}}_B$ and $\ensuremath{\mathsf{R}}_C$ are varied to obtain desired current levels D1 MUST BE FAST RECOVERY TYPE, eg: 1N5825 USED ABOVE I $_{B} \approx 100$ mA MSD6100 USED BELOW I $_{B} \approx 100$ mA Figure 2. Switching Time Test Circuit Figure 3. Turn-On Time Figure 4. Thermal Response Figure 5. Active-Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ} C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 6. Turn-Off Time Figure 7. Capacitance ## **ORDERING INFORMATION** | Device | Device Marking | Package | Shipping | |---------|----------------|-----------------------|-----------------| | 2N6107 | | TO-220AB | | | 2N6107G | 2N6107 | TO-220AB
(Pb-Free) | 50 Units / Rail | | 2N6109 | | TO-220AB | | | 2N6109G | 2N6109 | TO-220AB
(Pb-Free) | 50 Units / Rail | | 2N6111 | | TO-220AB | | | 2N6111G | 2N6111 | TO-220AB
(Pb-Free) | 50 Units / Rail | | 2N6288 | | TO-220AB | | | 2N6288G | 2N6288 | TO-220AB
(Pb-Free) | 50 Units / Rail | | 2N6292 | | TO-220AB | | | 2N6292G | 2N6292 | TO-220AB
(Pb-Free) | 50 Units / Rail | ### PACKAGE DIMENSIONS TO-220 CASE 221A-09 ISSUE AE #### NOTES - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.161 | 3.61 | 4.09 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.014 | 0.025 | 0.36 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered raderians of semiconductor Components industries, LC (SCILLC) - Scillute services in english to make changes without further induce to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative