SEMICONDUCTORS

ZXTN19055DZ

55V, SOT89, NPN medium power transistor

Summary

$B V_{\text {CEX }}>150 \mathrm{~V}$
$B V_{\text {CEO }}>55 \mathrm{~V}$
$I_{\text {(cont) }}=6 \mathrm{~A}$

$\mathrm{V}_{\mathrm{CE}(\text { sat })}<60 \mathrm{mV}$ @ 1A
$R_{\text {CE(sat) }}=\mathbf{2 8 m} \Omega$
$\mathrm{P}_{\mathrm{D}}=2.1 \mathrm{~W}$

Description

Packaged in the SOT89 outline this low saturation 55V NPN transistor offers extremely low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.

Feature

- Extremely low equivalent on-resistance of $28 \mathrm{~m} \Omega$
- 6 Amps continuous current
- Up to 10 amps peak current
- Very low saturation voltages
- Excellent $\mathrm{h}_{\text {FE }}$ characteristics up to 10 amps
- 150V Forward blocking voltage

Applications

- Emergency lighting circuits
- Motor driving (including DC fans)

- Solenoid, relay and actuator drivers
- DC modules
- Backlight inverters

Ordering information

Device	Reel size (inches)	Tape width $(\mathbf{m m})$	Quantity per reel
ZXTN19055DZTA	7	12	1000

Device marking

S75

ZXTN19055DZ

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	$\mathrm{V}_{\mathrm{CBO}}$	150	V
Collector-emitter voltage (forward blocking voltage)	$\mathrm{V}_{\mathrm{CEX}}$	150	V
Collector-emitter voltage (base open)	$\mathrm{V}_{\text {CEO }}$	55	V
Emitter-base voltage	$\mathrm{V}_{\text {EBO }}$	7	V
Continuous collector current ${ }^{(\mathrm{b})}$	I_{C}	6	A
Peak pulse current	I_{CM}	10	A
Power dissipation at $\mathrm{T}_{\text {amb }}=\mathbf{2 5}^{\circ} \mathrm{C}^{\text {(a) }}$	P_{D}	1.5	W
Linear derating factor		12	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}^{\circ} \mathrm{C}^{\text {(b) }}$	P_{D}	2.1	W
Linear derating factor		16.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient $^{(\mathrm{a})}$	$\mathrm{R}_{\Theta J A}$	83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{(\mathrm{b})}$	$\mathrm{R}_{\Theta J A}$	59	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 1 oz copper, in still air conditions.
(b) For a device surface mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 10 copper, in still air conditions.

ZXTN19055DZ

Characteristics

Transient Thermal Impedance

ZXTN19055DZ

Electrical characteristics (at $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Collector-base breakdown voltage	$\mathrm{BV}_{\mathrm{CBO}}$	150	200		V	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$
Collector-emitter breakdown voltage (forward blocking)	$\mathrm{BV}_{\text {CEX }}$	150	200		V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}<1 \mathrm{k} \Omega \text { or } \\ & -1 \mathrm{~V}<\mathrm{V}_{\mathrm{BE}}<+0.25 \mathrm{~V} \end{aligned}$
Collector-emitter breakdown voltage (base open)	$\mathrm{BV}_{\text {CEO }}$	55	75		V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}^{(*)}$
Emitter-base breakdown voltage	$\mathrm{BV}_{\mathrm{EBO}}$	7	8.1		V	$\mathrm{IE}=100 \mathrm{~mA}$
Collector-base cut-off current	$\mathrm{I}_{\text {CBO }}$		<1	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	nA $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=120 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \end{aligned}$
Collector-emitter cut-off current	${ }^{\text {I CEX }}$		<1	100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=120 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}<1 \mathrm{k} \Omega \text { or } \\ & -1 \mathrm{~V}<\mathrm{V}_{\mathrm{BE}}<0.25 \mathrm{~V} \end{aligned}$
Emitter cut-off current	IEBO		<1	50	nA	$\mathrm{V}_{\mathrm{EB}}=5.6 \mathrm{~V}$
Collector-emitter saturation voltage	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{gathered} 25 \\ 45 \\ 40 \\ 200 \\ 110 \\ 140 \\ 170 \end{gathered}$	40 70 60 350 140 200 250	mV mV mV mV mV mV mV	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}^{\left({ }^{(*)}\right.} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=600 \mathrm{~mA}^{(*)} \end{aligned}$
Base-emitter saturation voltage	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		$\begin{gathered} \hline 800 \\ 1000 \end{gathered}$	$\begin{gathered} 900 \\ 1150 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & I_{C}=2 A, I_{B}=20 m A^{(*)} \\ & I_{C}=6 A, I_{B}=600 m A^{(*)} \end{aligned}$
Base-emitter turn-on voltage	$\mathrm{V}_{\text {BE(on) }}$		$\begin{aligned} & 760 \\ & 900 \end{aligned}$	$\begin{gathered} 900 \\ 1050 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \end{aligned}$
Static forward current transfer ratio	h_{FE}	$\begin{gathered} 250 \\ 250 \\ 180 \\ 30 \end{gathered}$	$\begin{gathered} 400 \\ 400 \\ 300 \\ 50 \\ 20 \end{gathered}$	700		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{(*)} \end{aligned}$
Transition frequency	f_{T}	140	200		MHz	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$
Output capacitance	$\mathrm{C}_{\text {OBO }}$		21.2	30	pF	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Delay time	t_{d}		13.8			$\mathrm{V}_{C C}=10 \mathrm{~V}$,
Rise time	t_{r}		21.9			$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$,
Storage time	t_{s}		546			$\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=100 \mathrm{~m}$
Fall time	t_{f}		106			

NOTES:
(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2 \%$.

ZXTN19055DZ

Typical characteristics

ZXTN19055DZ

Package outline - SOT89

DIM	Millimeters		Inches		DIM	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
A	1.40	1.60	0.550	0.630	E1	2.13	2.29	0.084	0.090
B	0.44	0.56	0.017	0.022	e	1.50 BSC		0.059 BSC	
B1	0.36	0.48	0.014	0.019	e1	3.00 BSC		0.118 BSC	
C	0.35	0.44	0.014	0.019	H	3.94	4.25	0.155	0.167
D	4.40	4.60	0.173	0.181	L	0.89	1.20	0.155	0.167
E	2.29	2.60	0.090	0.102		-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 894549490	Telephone: (1) 6313602222	Telephone: (852) 26100611	Telephone: (44) 1616224444
Fax: (49) 8945494949 europe.sales@zetex.com	Fax: (1) 6313608222 usa.sales@zetex.com	Fax: (852) 24250494 asia.sales@zetex.com	Fax: (44) 1616224446 hq@zetex.com

For international sales offices visit www.zetex.com/offices
Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

