ZXTP25015DFH

15V, SOT23, PNP medium power transistor

Summary
$B V_{\text {CEO }}>-15 V$
$B V_{E C O}>-3 V$
$I_{C(\text { cont) })}=-4 \mathrm{~A}$
$R_{\text {CE(sat) }}=33 \mathrm{~m} \Omega$
$\mathrm{V}_{\mathrm{CE}(\text { sat })}<-55 \mathrm{mV}$ @ 1A
$P_{D}=1.25 \mathrm{~W}$

Complementary part number ZXTN25015DFH

Description

Advanced process capability and package design have been used to maximize the power handling and performance of this small outline transistor. The compact size and ratings of this device make it ideally suited to applications where space is at a premium.

Features

- High power dissipation SOT23 package

- High peak current
- Low saturation voltage
- 15 V forward blocking voltage
- 3 V reverse blocking voltage

Applications

- MOSFET and IGBT gate driving
- DC - DC converters
- Motor drive
- High side driver
- Load disconnect switch

Pinout - top view

Ordering information

Device	Reel size (inches)	Tape width $(\mathbf{m m})$	Quantity per reel
ZXTP25015DFHTA	7	8	3,000

Device marking

1A7

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	$\mathrm{V}_{\mathrm{CBO}}$	-15	V
Collector-emitter voltage	$\mathrm{V}_{\mathrm{CEO}}$	-15	V
Emitter-collector voltage (reverse blocking)	$\mathrm{V}_{\text {ECO }}$	-3	V
Emitter-base voltage	$\mathrm{V}_{\text {EBO }}$	-7	V
Continuous collector current ${ }^{(\mathrm{b})}$	I_{C}	-4	A
Base current	I_{B}	-1	A
Peak pulse current	I_{CM}	-10	A
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(a) }}$	P_{D}	0.73	W
Linear derating factor		5.84	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(b) }}$	P_{D}	1.05	W
Linear derating factor		8.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(c) }}$	P_{D}	1.25	W
Linear derating factor		9.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}^{\text {(d) }}$	P_{D}	1.81	W
Linear derating factor		14.5	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}} \mathrm{T}_{\mathrm{stg}}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient $^{(\mathrm{a})}$	$\mathrm{R}_{\Theta J A}$	171	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{(\mathrm{b})}$	$\mathrm{R}_{\Theta J A}$	119	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{(\mathrm{c})}$	$\mathrm{R}_{\Theta J A}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(d) }}$	$\mathrm{R}_{\text {ӨJA }}$	69	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 1 oz copper, in still air conditions.
(b) Mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(c) Mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(d) As (c) above measured at $\mathrm{t}<5$ secs.

ZXTP25015DFH

Characteristics

ZXTP25015DFH

Electrical characteristics (at $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Collector-base breakdown voltage	$\mathrm{BV}_{\mathrm{CBO}}$	-15	-35		V	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage (base open)	$\mathrm{BV}_{\text {CEO }}$	-15	-30		V	$I_{C}=-10 m A^{(*)}$
Emitter-base breakdown voltage	$\mathrm{BV}_{\mathrm{EBO}}$	-7	-8.4		V	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}$
Emitter-collector breakdown voltage (base open)	$\mathrm{BV}_{\mathrm{ECO}}$	-3	-8.2		V	$I_{E}=-100 \mu A^{(*)}$
Collector-base cut-off current	$\mathrm{I}_{\text {CBO }}$		<-1	$\begin{aligned} & -50 \\ & -20 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=-12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=-12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \end{aligned}$
Emitter-base cut-off current	$\mathrm{I}_{\text {EBO }}$		<-1	-50	nA	$\mathrm{V}_{\mathrm{EB}}=-5.6 \mathrm{~V}$
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & \hline-45 \\ & -110 \\ & -130 \\ & -160 \\ & -165 \end{aligned}$	$\begin{aligned} & -55 \\ & -150 \\ & -175 \\ & -210 \\ & -220 \end{aligned}$	mV mV mV mV mV	$\begin{aligned} & I_{C}=-1 A, I_{B}=-100 m A^{(*)} \\ & I_{C}=-1 A, I_{B}=-10 m A^{(*)} \\ & I_{C}=-2 A, I_{B}=-40 m A^{(*)} \\ & I_{C}=-4 A, I_{B}=-200 m A^{(*)} \\ & I_{C}=-5 A, I_{B}=-500 m A^{(*)} \end{aligned}$
Base-emitter saturation voltage	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		-930	-1050	mV	$I_{C}=-4 A, I_{B}=-200 m A^{(*)}$
Base-emitter turn-on voltage	$V_{\text {BE(on) }}$		-810	-900	mV	$\mathrm{I}_{\mathrm{C}}=-4 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}^{(*)}$
Static forward current transfer ratio	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} \hline 300 \\ 200 \\ 90 \end{gathered}$	$\begin{gathered} 450 \\ 315 \\ 145 \\ 30 \end{gathered}$	900		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=-4 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}^{(*)} \\ & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}^{(*)} \end{aligned}$
Transition frequency	f_{T}		295		MHz	$\begin{aligned} & I_{C}=-50 \mathrm{~mA}, V_{C E}=-10 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output capacitance	$\mathrm{C}_{\text {OBO }}$		25	30	pF	$\mathrm{V}_{C B}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{(*)}$
Delay time	t_{d}		33.8		ns	$\mathrm{V}_{C C}=-15 \mathrm{~V}$.
Rise time	t_{r}		43.5		ns	$I_{C}=-750 \mathrm{~mA},$
Storage time	t_{s}		196		ns	
Fall time	t_{f}		51.7		ns	

NOTES:
(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2 \%$.

ZXTP25015DFH

Typical characteristics

Package outline - SOT23

Dim.	Millimeters				Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
A	-	1.12	-	0.044	e1		OM	0.075	NOM
A1	0.01	0.10	0.0004	0.004	E	2.10	2.64	0.083	0.104
b	0.30	0.50	0.012	0.020	E1	1.20	1.40	0.047	0.055
C	0.085	0.20	0.003	0.008	L	0.25	0.60	0.0098	0.0236
D	2.80	3.04	0.110	0.120	L1	0.45	0.62	0.018	0.024
e	0.95 NOM		0.037 NOM		-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Kustermann-Park	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81541 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1)631 360 2222	Telephone: (852) 26100 611	Telephone: (44) 161622 4444 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com

For international sales offices visit www.zetex.com/offices
Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

